lunes, 28 de marzo de 2022

867- Enfermedad residual medible

Michael Heuser y otros. Actualización 2021 sobre MRD en la leucemia mieloide aguda: un documento de consenso del grupo de trabajo de MRD de la European Leukemia Net. Blood. 2021; 138(26): 2753–2767. Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany; y otros

Resumen

La enfermedad residual medible (ERM) es un biomarcador importante en la leucemia mieloide aguda (AML) que se utiliza para evaluaciones de pronóstico, predicción, seguimiento y eficacia-respuesta. El grupo de trabajo de ERM del European LeukemiaNet (ELN) evaluó la estandarización y armonización de ERM de manera continua y ha actualizado las recomendaciones de ERM de ELN de 2018 en función de desarrollos significativos en el campo. Se establecieron recomendaciones nuevas y revisadas durante reuniones de persona y en línea, y se realizó una encuesta Delphi de 2 etapas para optimizar el consenso. Todas las recomendaciones se clasifican por niveles de evidencia y acuerdo. Los cambios importantes incluyen especificaciones técnicas para pruebas de ERM basadas en secuenciación de próxima generación y evaluaciones integradoras de ERM independientemente de la tecnología. Otros temas incluyen el uso de ERM como punto final de pronóstico y sustituto para pruebas de drogas; selección de la técnica, material y puntos de tiempo apropiados para la evaluación de MRD e implicaciones clínicas de la evaluación de MRD. Además de las recomendaciones técnicas para el análisis de MRD de flujo y molecular, proporcionamos umbrales de MRD y definimos la respuesta de MRD, y detallamos cómo se deben informar y combinar los resultados de MRD si se utilizan varias técnicas. La evaluación de MRD en AML es compleja y clínicamente relevante, y los enfoques estandarizados para la aplicación, interpretación, conducta técnica e informes son de importancia crítica. 

Introducción

La evaluación de la enfermedad residual medible (MRD) en la leucemia mieloide aguda (AML) es un desafío. Varias tecnologías están disponibles para la cuantificación de MRD, pero los ensayos y los informes carecen de estandarización y comparabilidad. Aún así, la detección de MRD por cualquier metodología durante la remisión morfológica después de la quimioterapia estándar es un fuerte factor de pronóstico para la recaída subsiguiente y una supervivencia más corta en pacientes con AML. La monitorización de la MRD puede tener valor para guiar la terapia posterior a la remisión e identificar la recaída temprana y como criterio de valoración sustituto en los ensayos clínicos para acelerar el desarrollo de regímenes novedosos. La evaluación de MRD en AML ha suscitado un interés considerable por parte de médicos, pacientes,  autoridades reguladoras, la industria y los investigadores, y se necesita orientación para la armonización, el refinamiento y la validación de las pruebas de MRD.

El objetivo del panel de expertos en MRD para la AML de la European LeukemiaNet (ELN) fue actualizar nuestro artículo de consenso anterior y brindar nuestros conocimientos más recientes y recomendaciones de expertos sobre diferentes tecnologías y usos clínicos actuales de la MRD.  Las pautas actualizadas se escribieron de acuerdo con el consenso logrado mediante el uso de una encuesta Delphi (Métodos complementarios y Tabla 1 complementaria, disponible en el sitio web de Blood  y los resultados generales se resumen en Tabla 1-4.

Desde las pautas de 2018, hemos reemplazado el término "enfermedad residual mínima" por "enfermedad residual medible". Un resultado de prueba de MRD "positivo" o "negativo" se refiere a la detección, o no, de una enfermedad medible por encima de umbrales específicos que pueden variar según el ensayo y el laboratorio. Se aconseja a los medicos que pidan interpretación de los resultados de MRD individuales a sus colegas de laboratorio sobre  MRD. Es importante reconocer que un resultado negativo de MRD no indica necesariamente la erradicación de la enfermedad, sino que representa una enfermedad por debajo del umbral del ensayo en la muestra analizada, y los pacientes aún pueden experimentar una recaída. Además, un ensayo de MRD con un resultado distinto de cero aún puede ser llamado "negativo" por un laboratorio si el nivel detectado está por debajo del umbral relacionado con el pronóstico.....

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español. Este blog de bioquímica-clínica está destinado a profesionales bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Esta página se renuevan el 2 de abril.  
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina


sábado, 26 de marzo de 2022

866- Intimidación por informar sobre Covid-19

Eva Rodríguez, Editora:  El 38 % de los científicos encuestados por ‘Science’  han sido acosados por informar sobre Covid-19. SINC N° 505 -Número 505 25/03/2022 08:00 CEST

Uno de cada tres científicos que han participado en una encuesta llevada a cabo por el equipo de redacción de la revista Science han sufrido intimidación por hablar sobre la pandemia. La mayoría de ellos recibieron dicha intimidación a través de Twitter o por correo electrónico.

En los dos años que ha durado la pandemia, la comunidad científica ha aumentado su visibilidad en los medios de comunicación y de cara a la opinión pública, por la demanda de información sobre la crisis por la covid-19. Esto ha provocado en paralelo que, desde el inicio, algunos de ellos hayan sido objeto de ataques de negacionistas, y de aquellas personas que creen que el virus fue creado intencionadamente para causar daño o que las vacunas son peligrosas.

En octubre de 2021, Nature publicaba un informe en el cual se señalaba que el 81 % de los 321 científicos con los que contactaron y que habían hablado con medios de comunicación, declaraban haber recibido al menos ataques personales ocasionales por informar de la pandemia.

Ahora, el equipo de redacción de Science saca a la luz otro trabajo en el que da a conocer la experiencia de investigadores que, sin ser mediáticos, han publicado estudios sobre la covid-19.

 "La diferencia más importante con el estudio previo de Nature es el tipo de muestra. En ese trabajo se encuestó a los investigadores que figuraban en las listas de medios de comunicación tratando el tema de la covid-19 en varios países, así como otros que habían sido destacados en la cobertura mediática”, dice a SINC Cathleen O'Grady, colaboradora de Science, que fue la encargada de diseñar, analizar los datos y escribir el tema.

En cambio, añade, “nosotros queríamos saber cómo eran estos problemas en el caso de los científicos que tenían menos o ninguna cobertura mediática, y en el de aquellos que eran activos en las redes sociales, sin ser destacados en los medios de comunicación tradicionales”. 

El metacientífico Tim Errington asesoró sobre el proceso, los métodos de la encuesta y el análisis estadístico. Por su parte, Martin Enserink, editor de noticias internacionales en la revista, aportó su contribución editorial.

Resultados anónimos

Para iniciar la investigación lanzaron una encuesta en línea a 9.585 investigadores que representaban a una amplia gama de disciplinas, a la que respondieron un total de 510. El resultado fue que el 38 % informó de al menos un tipo de ataque.

“Obtuvimos una muestra mayor que la de la encuesta de Nature, e incluimos a científicos con y sin mucha atención pública. Dado que preguntamos a un grupo muy diferente de personas sobre sus experiencias, nuestros resultados son distintos”, explica O'Grady.

El trabajo también requirió una revisión ética, a través de la Biomedical Research Alliance de Nueva York (BRANY, por sus siglas en inglés).

“La encuesta recogía datos que podían utilizarse para identificar a las personas. Por ejemplo, podría mirar todas las respuestas que alguien dio en la encuesta y averiguar quién es esa persona, aunque no haya dado su nombre o su correo electrónico. Dado que la recopilación y posterior publicación podría haber puesto en peligro a los participantes, y que la encuesta pedía a la gente que describiera experiencias difíciles e incluso traumáticas, queríamos estar seguros de que estábamos haciendo las cosas con cuidado y de forma ética”, agrega.....

Leer el articulo completo

(*) Este blog de bioquímica-clínica está destinado a profesionales bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Esta  página se renuevan el 28 de abril. 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina


lunes, 21 de marzo de 2022

865- Leucemias: actualización

Adithya Chennamadhavuni, Varun Lyengar, Alex Shimanovsky.Leucemias, StatPearls Treasure Island (FL): StatPearls Publishing; 2022 Jan.University of Iowa, Brown University-USA

Actividad de Educación Continua

La leucemia es un grupo heterogéneo de neoplasias malignas hematológicas que surgen de la proliferación disfuncional de leucocitos en desarrollo. Se clasifica en aguda o crónica y en mielocítica o linfocítica. El tratamiento depende del tipo de leucemia, pero generalmente implica quimioterapia. Esta actividad repasa la evaluación y el tratamiento de la leucemia y destaca el papel del equipo interprofesional en la evaluación y el tratamiento de pacientes con esta afección. Esta actividad describe la evaluación y el manejo de la leucemia y revisa el papel del equipo interprofesional para mejorar la atención de los pacientes con esta afección.

Objetivos:  

  • Identificar la epidemiología de la leucemia. 
  • Revisar la evaluación adecuada de la leucemia. 
  • Opciones de manejo disponibles para la leucemia. 
  • Estrategias del equipo interprofesional para mejorar la coordinación de su atención. 
  • Formas de comunicación cuando se trata a pacientes con leucemia.

Introducción

La leucemia es una producción de leucocitos anormales ya sea como un proceso primario o secundario. Según la rapidez de proliferación, se pueden clasificar como agudas o crónicas, y mieloides o linfoides según la célula originadora. Los subtipos predominantes son la leucemia mieloide aguda (AML) y la leucemia mieloide crónica (LMC), que involucran la cadena mieloide; y leucemia linfoblástica aguda (LLA) y leucemia linfocítica crónica (LLC) que afecta a la cadena linfoide. Otras variantes menos comunes, como las leucemias de células B y T maduras, las leucemias relacionadas con las células NK, por nombrar algunas, surgen de las células WBC maduras. Sin embargo, con el advenimiento de la secuenciación de próxima generación (SPG) y la identificación de varios biomarcadores, la clasificación de la Organización Mundial de la Salud (OMS) se actualizó en 2016, trayendo múltiples cambios a la clasificación tradicional para AML. GLOBOCAN, que es un observatorio global de tendencias de cáncer, mostró una incidencia global de 474.519 casos con 67.784 en América del Norte. Las Tasas Estandarizadas por Edad rondan el 11 por 100.000, con una tasa de mortalidad de aproximadamente 3,2.

Se han identificado muchos factores de riesgo genéticos, como los síndromes de Klinefelter y Down, la ataxia telangiectasia, el síndrome de Bloom y las telomeropatías como la anemia de Fanconi, la disqueratosis congénita y el síndrome de Shwachman-Diamond; mutaciones de la línea germinal en RUNX1, CEBPA, por nombrar algunas. Infecciones virales por virus Epstein Barr, virus linfotrópico T humano, exposición a radiación ionizante, radioterapia, exposición ambiental con benceno, antecedentes de tabaquismo, antecedentes de quimioterapia con agentes alquilantes, agentes de topoisomerasa II. Los síntomas son inespecíficos y pueden incluir fiebre, fatiga, pérdida de peso, dolor de huesos, hematomas o sangrado. Los diagnósticos definitivos a menudo requieren una biopsia de médula ósea, cuyos resultados informan tratamientos interprofesionales que van desde la quimioterapia hasta el trasplante de células madre.

Agudo vs. crónico: Los blastos, que son células inmaduras y disfuncionales, normalmente constituyen del 1% al 5% de las células de la médula. Las leucemias agudas se caracterizan por más del 20% de blastos en el frotis de sangre periférica o en la médula ósea, lo que conduce a una aparición más rápida de los síntomas. En contraste, la leucemia crónica tiene menos del 20% de blastos con un inicio de síntomas relativamente crónico. La fase acelerada/blastica es una transformación de la leucemia crónica en una fase aguda con un grado significativamente mayor de blastos.

Subtipos principales de leucemia son:

  • Leucemia linfoblástica aguda (LLA): se observa en pacientes con transformación blástica de células B y T. Es la leucemia más común en pediatría, representando hasta el 80% de los casos en este grupo frente al 20% de los casos en adultos. El tratamiento entre adultos jóvenes se inspira predominantemente en regímenes pediátricos con mejores tasas de supervivencia.
  • Leucemia mielógena aguda (LMA): se caracteriza por más del 20% de blastos mieloides y es la leucemia aguda más común en adultos. Es el cáncer más agresivo con un pronóstico variable dependiendo de los subtipos moleculares. 
  • Leucemia linfocítica crónica (LLC): se produce por la proliferación de células linfoides monoclonales. La mayoría de los casos ocurren en personas de entre 60 y 70 años. 
  • Leucemia mielógena crónica (LMC): eneralmente surge de la translocación recíproca y la fusión de BCR en el cromosoma 22 y ABL1 en el cromosoma 9, lo que da como resultado una tirosina quinasa desregulada en el cromosoma 22 llamada cromosoma Filadelfia. Esto, a su vez, provoca una población monoclonal de granulocitos disfuncionales, predominantemente neutrófilos, basófilos y eosinófilos.

Etiología

Se identifican múltiples factores de riesgo genéticos y ambientales en el desarrollo de la leucemia. 

  • La exposición a la radiación ionizante se asocia con un mayor riesgo de múltiples subtipos de leucemia. 
  • La exposición al benceno es un factor de riesgo de leucemia en adultos, particularmente AML.  
  • La exposición previa a la quimioterapia, especialmente a los agentes alquilantes ya los inhibidores de la topoisomerasa, aumenta el riesgo de leucemia aguda más adelante en la vida.
  • El antecedente de cualquier malignidad hematológica es un factor de riesgo para desarrollar posteriormente otro subtipo de leucemia. 
  • Las infecciones virales (p. ej., el virus de la leucemia de células T humanas, el virus de Epstein Barr) están relacionadas con subtipos de ALL. 
  • Varios síndromes genéticos (p. ej., síndrome de Down, anemia de Fanconi, síndrome de Bloom, síndrome de Li-Fraumeni) están asociados con un mayor riesgo de AML y ALL.
Epidemiología

GLOBOCAN, que es un observatorio global de tendencias de cáncer, mostró la incidencia global de 474.519 casos, con 67.784 en América del Norte. Las tasas estandarizadas por edad están alrededor de 11 por 100.000 con una tasa de mortalidad de alrededor de 3,2. La LLA y la LMA, que son enfermedades importantes tanto en la niñez como en la edad adulta, tienen distribuciones de edades bimodales con MLC y LLC principalmente en los grupos de mayor edad. Según los datos de SEER, hay 61.090 casos nuevos estimados de leucemia en 2021, lo que representa el 3,2 % de todos los casos nuevos de cáncer, lo que convierte a la leucemia en el décimo cáncer más común en los Estados Unidos. Las muertes estimadas son alrededor de 23.660, lo que comprende el 3,9% de todas las muertes por cáncer. Desde 2006, la incidencia de la enfermedad ha aumentado una media del 0,6% anual, mientras que la mortalidad ha disminuido una media anual del 1,5%. 

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español. Este blog de bioquímica-clínica está destinado a profesionales bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan dentro de 5 días en forma automática.  
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina



sábado, 19 de marzo de 2022

864- Compartir públicamente datos científicos

Max Kozlov, Editor. Nature News. 2022 February 16. El  NIH emite un mandato "sísmico": compartir datos públicamente.

Dicen los científicos que la política de “intercambio de datos” podría establecer un estándar global para la investigación biomédica, pero tienen dudas sobre la logística y su equidad.

En enero de 2023, el US National Institutes of Health (NIH) de EE. UU. comenzara a exigir a la mayoría de los 300.000 investigadores y a las 2.500 instituciones que financia anualmente, que incluyan un plan de gestión de datos en sus solicitudes de subvenciones para poner sus datos a disposición del público.

Los investigadores que hablaron con Nature aplaudieron en gran medida los principios de la ciencia abierta que subyacen a la política y el ejemplo global que establece. Pero a algunos les preocupan los desafíos logísticos que enfrentarán los investigadores y sus instituciones para cumplirlo. Es decir, les preocupa que la política pueda exacerbar las desigualdades existentes en el panorama de la financiación de la ciencia y podría ser una carga para los científicos que recién comienzan su carrera, quienes realizan la mayor parte de la recopilación de datos y que ya están al límite.

El mandato, tiene como objetivo abordar la crisis de reproducibilidad en la investigación científica. El año pasado, después de un intento de ocho años y un costo de 2 millones de dólares para replicar estudios influyentes sobre el cáncer, descubrió que menos de la mitad de los experimentos evaluados resistieron el escrutinio. Los esfuerzos para contabilizar el costo de la investigación irreproducible en los Estados Unidos han encontrado que se gastan de U$ 10 mil a 50 mil millones  en estudios que utilizan métodos deficientes, un costo que en su mayoría es asumido por las agencias de financiación pública.

Los estudios irreproducibles no solo desperdician el dinero de los contribuyentes, dice Lyric Jorgenson, director asociado interino de política científica en los NIH, sino que también socavan la confianza pública en la ciencia. Dice “Queremos asegurarnos de que estamos cumpliendo con la inversión de la nación y fomentando la transparencia y la rendición de cuentas en la investigación”.

Joseph Ross, investigador de políticas de salud de la Yale School of Medicine in New Haven, Connecticut, dice que los efectos del mandato se sentirán mucho más allá de las fronteras de EE. UU. porque el NIH es el financiador público más grande del mundo en investigación biomédica. Asegurarse de que la política establezca el tono correcto es importante, dice Ross, porque indicará a los científicos de todo el mundo cómo se debe realizar la investigación biomédica.

Un cambio sísmico

Según la nueva política, que entro en vigor el 25 de enero, todas las solicitudes de subvención del NIH para proyectos que recopilen datos científicos deben incluir un plan de "gestión e intercambio de datos" que contenga detalles sobre el software o las herramientas necesarias para analizar los datos, cuándo y dónde se publicarán los datos sin procesar y cualquier consideración especial para acceder a esos datos o distribuirlos. Este cambio sísmico en la práctica, ha dejado a algunos investigadores preocupados por la cantidad de trabajo que requerirá el mandato cuando esto entre en vigencia.

Jenna Guthmiller, inmunóloga de la University of Chicago en Illinois, puede atestiguar que probablemente se requerirá más trabajo. Ella es una de los pocos investigadores financiadas a través de un programa del US National Institute of Allergy and Infectious Diseases (NIAID) de EE. UU. que ha promulgado una política similar al plan de todo el NIH. Para Guthmiller, eso significó rastrear información sobre reactivos que ya no existen y condiciones experimentales para un proyecto que ha estado funcionando durante cuatro años. Eso tomó 15 horas, dice, "y eso que tuve la suerte de trabajar con un administrador de datos".........

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español. Este blog de bioquímica-clínica está destinado a profesionales bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog , se renuevan dentro de 2 días en forma automática. 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires, R. Argentina


lunes, 14 de marzo de 2022

863- Diagnóstico de porfirias

Elena Di Pierro, Michele De Canio, Rosa Mercadante, Maria Savino, Francesca Granata, Dario Tavazzi, Anna Maria Nicolli, Andrea Trevisan, Stefano Marchini,Silvia Fustinoni.  El laboratorio en el diagnóstico de porfirias. Diagnostics (Basel). 2021; 11(8): 1343. Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.

Resumen

Las porfirias son un grupo de enfermedades que son clínica y genéticamente heterogéneas y se originan principalmente por disfunciones hereditarias de enzimas específicas involucradas en la biosíntesis del hemo. Tales disfunciones dan como resultado la producción y excreción excesivas de los intermediarios de la ruta de biosíntesis del hemo en la sangre, la orina o las heces, y estos intermediarios son responsables de presentaciones clínicas específicas. Las porfirias continúan siendo infra-diagnosticadas, aunque el diagnóstico de laboratorio basado en la medición de metabolitos podría utilizarse para respaldar la sospecha clínica en todos los pacientes sintomáticos. Además, la medición de actividades enzimáticas junto con un análisis molecular pueden confirmar el diagnóstico y, por lo tanto, son cruciales para identificar portadores presintomáticos. La presente revisión proporciona una descripción general de los ensayos de laboratorio que se utilizan con mayor frecuencia para establecer el diagnóstico de porfiria. Esto ayudaría a los médicos a prescribir pruebas de diagnóstico adecuadas e interpretar los resultados de las mismas.

1. Introducción

Las porfirias comprenden un grupo de ocho trastornos metabólicos que se originan a partir de una disfunción catalítica causada genéticamente de las enzimas involucradas en la ruta de biosíntesis del grupo hemo. Las mutaciones heredadas dominantes o recesivas en cualquiera de los genes que codifican estas enzimas conducen a una alteración en la síntesis de hemo junto con la acumulación patológica y la excreción medible de los intermediarios de la ruta de biosíntesis de hemo.

Puede ocurrir una acumulación de los siguientes dos tipos diferentes de metabolitos: uno son los precursores de porfirinas, como el ácido 5-aminolevulínico (ALA) y el porfobilinógeno (PBG), que son moléculas lineales no fluorescentes, y el otro tipo son las porfirinas como las uroporfirinas (URO), las coproporfirinas (COPRO) y las protoporfirinas (PROTO), que son moléculas circulares que emiten señales de fluorescencia cuando se excitan. 

La acumulación de estos metabolitos se produce en diferentes muestras biológicas en función de sus propiedades químicas. Dado que el gradiente de hidrofobicidad aumenta a medida que avanza la síntesis de hemo, los metabolitos más hidrofílicos (ALA, PBG, URO, COPRO) ocurren principalmente en la orina, mientras que los relativamente hidrofóbicos (COPRO, PROTO) ocurren en las heces.

Las porfirinas son los productos oxidados de los porfirinógenos, que son los sustratos reales de las enzimas implicadas en la biosíntesis del hemo. Las porfirinas existen en diferentes isómeros según la disposición de los sustituyentes acetato (A), propionato (P), metilo (M) y vinilo (V) de los cuatro pirroles del anillo de porfirina. Las isoformas más comunes son la isoforma III con sustituyentes dispuestos asimétricamente y la isoforma I con sustituyentes dispuestos simétricamente.

La biosíntesis del hemo involucra las isoformas III ya que el hidroximetilbilano (HMB) se transforma, por acción de la uroporfirinógeno III sintasa (UROS), en uroporfirinógeno III. Este sufre una descarboxilación posterior por la uroporfirinógeno descarboxilasa (UROD) para formar hepta-, hexa- y penta-carboxil porfirinógeno III y, finalmente, coproporfirinógeno III. Sin embargo, en condiciones fisiológicas, una fracción de HMB escapa de la acción catalítica de los UROS y da como resultado una conversión no enzimática de HMB en el isómero I de uroporfirinógeno. El uroporfirinógeno I puede sufrir posteriormente descarboxilación por la acción de UROD para formar hepta-, hexa- y penta-carboxil porfirinógeno I y, finalmente, coproporfirinógeno I; sin embargo, la reacción no puede avanzar más allá de este paso para formar hemo, ya que la siguiente enzima en la vía, la coproporfirinógeno oxidasa (CPOX), es estereoespecífica para el isómero III . Por lo tanto, los isómeros I se acumulan en el tejido y se excretan como porfirinas I. Una gran presencia de porfirinas I, así como una proporción anormal de isómero I/isómero III en los fluidos biológicos, son relevantes para definir la presencia de porfiria.

Fisiológicamente, la síntesis de hemo se logra mediante la acción secuencial de ocho enzimas y todo el proceso está finamente regulado. Los sustratos intermedios distintos del hemo producto final podrían ejercer un efecto regulador sobre las enzimas involucradas en la vía. Además, la capacidad catalítica de las enzimas en diferentes segmentos de la ruta varía mucho, lo que lleva a variaciones en la presión del sustrato. Por lo tanto, la disfunción de una actividad enzimática específica puede provocar una acumulación del sustrato inmediatamente anterior al bloqueo y de otros metabolitos previos de la misma línea.

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español. Este blog de bioquímica-clínica está destinado a profesionales bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan dentro de 5 días en forma automática.  
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina


sábado, 12 de marzo de 2022

862- Variabilidad biológica: actualización

Q&A: Moderadores: Khushbu Patela, Joe M. El-Khouryb, Expertos: Aasne K. Aarsand, Tony Badrick, Graham R.D. Jones, Ken Sikaris,  M. Laura Parnasj. Utilidad actual y confiabilidad de la variabilidad biológica. Oxford Academic-Clinical Chemistry,2021; 67 (8): 1050–1055, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, ; Department of Laboratory Medicine, Yale University, New Haven, CT, USA

La variación biológica (BV) está entrelazada con muchas consideraciones en la medicina de laboratorio y forma la base para establecer especificaciones de rendimiento analítico, parámetros de verificación delta, intervalos de referencia y valores de cambio de referencia. La variación biológica describe la fluctuación en la concentración del analito alrededor de un punto de ajuste homeostático dentro de un solo sujeto (BV dentro del sujeto) o un grupo de sujetos (BV entre sujetos). La literatura que evalúa los datos de BV en el laboratorio de mdicina se remonta a más de 50 años; sin embargo, la falta de estandarización y diseños de estudio apropiados para derivar datos de BV ha llevado a una discrepancia significativa en las estimaciones de BV informadas. Esta falta de reproducibilidad en estudios de VB más antiguos dificultó significativamente su adopción en la práctica clínica.

En 2014, la  European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) estableció el Task and Finish Group for the Biological Variation Database, que en colaboración con el Working Group on Biological Variation (WG-BV) establecieron para abordar estos problemas en BV. En 2018, los grupos publicaron conjuntamente su BV Data Critical Appraisal Checklist (BIVAC) en esta revista, que fue un primer paso esencial en la dirección de tener datos de BV confiables. Esta lista de verificación constaba de una escala "A, B, C, D" que evaluaba los estudios de BV publicados en 14 indicadores de calidad (QI) diferentes. Las publicaciones que obtuvieron una "D" para cualquier QI individual no se incluyeron en los metanálisis finales para derivar las estimaciones de BV. Esta lista de verificación luego se aplicó a más de 500 estudios publicados para más de 230 analitos para establecer estimaciones de BV más confiables.

Un apoyo más fuerte para la confiabilidad de las estimaciones de BV surgió ese mismo año en otra publicación en esta revista. En ese estudio, el autor mostró que los datos de BV se derivaron de bases de datos de patología utilizando más de 3000 pruebas pareadas secuenciales para 26 analitos comúnmente ordenados, altamente correlacionados con datos de la literatura (similar a la base de datos EFLM, que no estaba disponible públicamente en ese momento). Además, el autor no encontró ningún efecto significativo del sexo, la edad o el tiempo entre recolecciones en las estimaciones de BV derivadas para estos analitos. Tomados en conjunto, estos estudios sugieren que las estimaciones de BV derivadas de estudios cuidadosamente diseñados y bien descritos son confiables.

Estos desarrollos son alentadores y abren la posibilidad de aplicaciones nuevas y de gran alcance en la medicina de laboratorio. En un ejemplo reciente, la  AACC Academy publicó un documento de orientación sobre "Investigación de laboratorio de lesión renal aguda" en el que utilizaron los datos de BV dentro del sujeto informados en la base de datos EFLM para calcular un valor de cambio de referencia (RCV) para la creatinina y recomendar un nueva definición de lesión renal aguda (+20 % cuando la creatinina basal es ≥1,0 ​​mg/dl o +0,2 mg/dl si es <1,00 mg/dl) para reemplazar la definición actual basada en  consenso (+0,3 mg/dl). ¿Qué más depara el futuro de este floreciente campo?

En esta sesión Q&A de preguntas y respuestas, hemos invitado a 5 expertos de Europa, Australia y América del Norte, con diversos antecedentes en evaluación de calidad externa (pruebas de competencia), industria, hospitales terciarios y laboratorios comerciales para brindar sus perspectivas sobre los datos y/o bases de datos de BV, su confiabilidad y aplicaciones a la medicina de laboratorio.

Preguntas a considerar

  • ¿Cómo utiliza actualmente los datos de variación biológica en su institución? ¿Lo ha publicado en algún lugar para que lo vean las partes interesadas (pacientes, médicos o directores de laboratorio)?
  • ¿De dónde obtiene estimaciones de datos de variación biológica? ¿Y cómo evalúa la precisión de estas fuentes?
  • ¿Cuáles son las principales limitaciones de los datos actuales de variación biológica y sus bases de datos? ¿Y cómo propone abordarlos, si es posible?
  • ¿Qué recomendaciones/advertencias ofrece a las personas que están considerando utilizar datos y bases de datos de variación biológica en su institución por primera vez?
  • ¿Qué función(es) futura(s) pueden desempeñar los datos de variación biológica en la medicina de laboratorio?

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español. Este blog de bioquímica-clínica está destinado a profesionales bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog , se renuevan dentro de 2 días en forma automática. 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires, R. Argentina


lunes, 7 de marzo de 2022

861- Técnicas diagnostico para células falciformes

Wjdan A. Arishi, Hani A. Alhadrami, Mohammed Zourob. Técnicas para la detección de la enfermedad de células falciformes: una revisión. Micromachines (Basel). 2021; 12(5): 519. Zulfiqur Ali, Academic Editor and Gulden Camci-Unal, Academic Editor. Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University,Saudi Arabia

Resumen

La enfermedad de células falciformes (ECF) es una enfermedad generalizada causada por una mutación en el gen de la globina beta que conduce a la producción de una hemoglobina anormal llamada hemoglobina S. La herencia de la mutación puede ser homocigota o heterocigota combinada con otra mutación de hemoglobina. La ECF se puede caracterizar por la presencia de células falciformes densas que causan hemólisis de las células sanguíneas, anemia, episodios dolorosos, daño a los órganos y, en algunos casos, la muerte. La detección temprana de ECF puede ayudar a reducir la mortalidad y manejar la enfermedad de manera efectiva. Por ello, se han desarrollado diferentes técnicas para detectar la enfermedad de células falciformes y los estados de portador con alta sensibilidad y especificidad. Estas técnicas pueden ser pruebas de detección, como hemograma completo, frotis de sangre periférica y prueba de drepanocitosis; pruebas de confirmación tales como técnicas de separación de hemoglobina; y pruebas genéticas, que son más costosas y deben realizarse en laboratorios centralizados por personal altamente calificado. Sin embargo, se han desarrollado técnicas portátiles avanzadas en el punto de atención para proporcionar un dispositivo de bajo costo, simple y fácil de usar para detectar ECF, por ejemplo, combinando pruebas de solubilidad con dispositivos portátiles, utilizando clasificaciones microscópicas de teléfonos inteligentes, técnicas de procesamiento de imágenes, inmunoensayos rápidos, y plataformas basadas en sensores. Esta revisión proporciona una descripción general de las técnicas actuales y emergentes para la detección de la enfermedad de células falciformes y destaca los diferentes métodos potenciales que podrían aplicarse para ayudar al diagnóstico temprano de la ECF. 

1. Introducción

La enfermedad de células falciformes (ECF) es un trastorno multisistémico relacionado con una enfermedad aguda, episodios dolorosos y daño orgánico gradual. La anemia de células falciformes está causada por mutaciones puntuales en el gen HBB, que codifica la subunidad β, donde la adenina se sustituye por timina (GAG > GTG) en el codón 6 del gen HBB. Como resultado de la sustitución de nucleótidos, el aminoácido se altera y el ácido glutámico se reemplaza por valina, lo que da como resultado la formación de hemoglobina S (HbS). La HbS se polimeriza en un estado desoxigenado y forma células falciformes rígidas y menos solubles. La ECF surge cuando se heredan dos alelos mutados βS/βS (homocigotos) o en el caso de heredar diferentes tipos de alelos heterocigotos mixtos como la falciforme-β-talasemia HbSβ-talasemia, la drepanocitosis por hemoglobina C (HbSC) y otras combinaciones. Cuando el rasgo de células falciformes es heterocigoto βA/βS, significa que solo un alelo se ve afectado y produce hemoglobina insoluble, y el otro gen es de tipo salvaje y produce hemoglobina normal. 

El mecanismo de patogenia de la ECF depende de la polimerización de la hemoglobina S, que se desencadena por la menor afinidad por el oxígeno. La polimerización altera las propiedades físicas de los glóbulos rojos, como la forma y la membrana celular, lo que lleva a la deshidratación de las células y al aumento de la polimerización. La polimerización repetida y la formación de células falciformes conducen a la formación irreversible de células falciformes. Esto acelera la destrucción celular y reduce la vida útil de las células en ≥75 %, lo que provoca anemia hemolítica. Además, la célula polimerizada no puede moverse con facilidad en los vasos sanguíneos pequeños, lo que provoca el bloqueo del vaso, es decir, la vasooclusión. 

La complicación aguda más común de la ECF son las crisis vaso-oclusivas agudas (VOC) que causan crisis de dolor y síndrome torácico agudo, que se considera la principal causa de hospitalización y muerte entre los pacientes con ECF. Las complicaciones crónicas de la ECF comienzan a aparecer con la edad, ya que la falla orgánica debido a la isquemia progresiva conduce a una muerte más temprana, enfermedad cerebrovascular, hipertensión pulmonar, retinopatía y priapismo. 

Además, las complicaciones durante el embarazo incluyen preeclampsia y parto prematuro. Los niños con ECF que viven en el África subsahariana tienen una alta tasa de mortalidad estimada en 50 a 80 % a los cinco años. La causa más común de muerte en los niños es la infección, incluida la enfermedad neumocócica invasiva y la malaria. En los países desarrollados, la esperanza de vida de los pacientes con ECF ha mejorado gracias al diagnóstico precoz, el tratamiento integral y la atención médica general. Por lo tanto, la detección temprana apoya el manejo efectivo de la enfermedad.......

La detección de hemoglobina S y el diagnóstico de la enfermedad de células falciformes dependen principalmente del laboratorio clínico, donde se utiliza una combinación de pruebas bioquímicas y moleculares para la detección y confirmación del diagnóstico. Los métodos más populares para detectar estas enfermedades son: el recuento total de células sanguíneas, la electroforesis de Hb y la cromatografía líquida de alta resolución (HPLC). Estos métodos se consideran el estándar de oro en el diagnóstico de ECF.

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español. Este blog de bioquímica-clínica está destinado a profesionales bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan dentro de 5 días en forma automática. 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina


sábado, 5 de marzo de 2022

860- Omicron: sub-variante B2

Freda Kreier, Editora. ¿Por qué la sub-variante 2 Omicron se propaga más rápido que la original? Nature news. 23 February 2022

Los primeros estudios sugieren que el linaje BA.2 del SARS-CoV-2 podría prolongar la ola de Omicron, pero no necesariamente causará una nueva oleada de infecciones por COVID.

Los investigadores de COVID-19 se apresuran a comprender por qué un pariente de la variante principal de Omicron está desplazando a su hermano en países de todo el mundo.

La variante, conocida como BA.2, se ha extendido rápidamente en países como Dinamarca, Filipinas y Sudáfrica en las últimas semanas. Sigue a la propagación inicial de la variante BA.1 Omicron, que se identificó por primera vez en el sur de África a fines de noviembre y se extendió rápidamente por todo el mundo.

Un estudio de laboratorio de BA.2 sugiere que su rápido ascenso es probablemente el resultado de que es más transmisible que la BA.1. Y otros estudios preliminares sugieren que BA.2 puede superar fácilmente la inmunidad de la vacunación y la infección previa con variantes anteriores, aunque no es mucho mejor que BA.1 para hacerlo.

Si los estudios epidemiológicos del mundo real respaldan estas conclusiones, los científicos creen que es poco probable que BA.2 provoque una segunda ola importante de infecciones, hospitalizaciones y muertes después del ataque inicial de Omicron.

“Podría prolongar la oleada de Omicron. Pero nuestros datos sugerirían que no conduciría a un nuevo aumento adicional”, dice Dan Barouch, inmunólogo y virólogo del Centro Médico Beth Israel Deaconess en Boston, Massachusetts, quien dirigió el estudio de laboratorio, publicado en el servidor de preimpresión medRxiv. el 7 de febrero.

Ventaja de crecimiento

El aumento constante de la prevalencia de BA.2 en varios países sugiere que tiene una ventaja de crecimiento sobre otras variantes circulantes, dice Mads Albertsen, bioinformático de la Universidad de Aalborg en Dinamarca. Eso incluye otras formas de Omicron, como un linaje menos frecuente llamado BA.3

“Desde una perspectiva científica, la pregunta es por qué”, dice Barouch. Los investigadores creen que una gran parte de la razón por la que Omicron reemplazó rápidamente a la variante Delta es su capacidad para infectar y propagarse entre las personas que habían sido inmunes a Delta. Entonces, una posibilidad para el aumento de BA.2 es que es incluso mejor que BA.1 para superar la inmunidad, incluida potencialmente la protección obtenida de una infección BA.1.

Los diferentes comportamientos de las variantes podrían explicarse por sus muchas diferencias genéticas. Docenas de mutaciones distinguen a BA.1 de BA.2, particularmente en porciones clave de la proteína pico del virus, el objetivo de potentes anticuerpos que pueden bloquear la infección. “BA.2 tiene todo un lío de nuevas mutaciones que nadie ha probado”, dice Jeremy Luban, virólogo de la Facultad de Medicina Chan de la Universidad de Massachusetts en Worcester.

Para evaluar cualquier diferencia entre BA.1 y BA.2, el equipo de Barouch midió qué tan bien los anticuerpos "neutralizantes" o bloqueadores de virus en la sangre de las personas protegían las células de la infección por virus con la proteína pico de cualquiera de las variantes. El estudio analizó a 24 personas que habían recibido tres dosis de la vacuna de ARN fabricada por Pfizer en la ciudad de Nueva York; produjeron anticuerpos neutralizantes que fueron ligeramente mejores para defenderse de la infección por virus con el pico de BA.1 que aquellos con BA.2. Lo mismo sucedió con un grupo más pequeño de personas que habían ganado inmunidad a la infección durante el aumento inicial de Omicron y, en algunos casos, también a la vacunación.

La pequeña diferencia en la potencia general frente a las dos variantes significa que es poco probable que la capacidad de evadir la inmunidad explique el ascenso de BA.2 en todo el mundo, dice Barouch.

Leer el articulo completo


(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español. Este blog de bioquímica-clínica está destinado a profesionales bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog , se renuevan dentro de 2 días en forma automática. 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires, R. Argentina