jueves, 8 de abril de 2021

766- SARS-CoV-2 (Covid-19): actualización

Adel AA Ismail. SARS-CoV-2 (Covid-19) una breve actualización sobre bioquímica molecular, patología, diagnóstico y estrategias terapéuticas.Annals of Clinical Biochemistry 0(0) 1–6. Retired Consultant in Clinical Biochemistry and Chemical Endocrinology, West Yorkshire, UK.

Resumen

La pandemia en curso del coronavirus (covid-19) destaca la necesidad de cooperación científica mundial para avanzar en nuestra comprensión de los mecanismos inmunológicos, moleculares y bioquímicos que causan la infección por este virus. Una mejor comprensión de los procesos clave ha permitido el desarrollo de vacunas en un tiempo récord y de agentes con el potencial de tratar y neutralizar los brotes de coronavirus actuales y futuros. Hasta la fecha, los agentes clínicamente eficaces para la prevención y el tratamiento de las infecciones por covid-19 son limitados. Esta revisión proporciona una breve sinopsis sobre la biología molecular, la patología y las pruebas de laboratorio comúnmente utilizadas en el diagnóstico y pronóstico del covid-19, así como el desarrollo de vacunas y estrategias terapéuticas para manejar sus mutaciones actuales y futuras.

Introducción

La pandemia mundial resultante de una nueva mutación en un coronavirus (CoV) aún está en curso. Tras la caracterización genómica inicial en diciembre de 2019, la atención se centró inmediatamente en las medidas preventivas para minimizar la propagación de la infección. El uso extensivo de pruebas de laboratorio ha sido y sigue siendo una parte fundamental de estas medidas a pesar de sus limitaciones y costo. Al mismo tiempo, ha habido un intenso enfoque de investigación sobre los mecanismos que sustentan la infectividad del coronavirus. La infección comienza cuando el virus reconoce un receptor de la célula huésped y se une a él. A esto le sigue la fusión de las membranas viral y de la célula huésped, liberando ARN viral monocatenario en la célula huésped. Luego, la replicación del material genómico viral ocurre a través de la propia polimerasa dependiente de ARN, replicasa, helicasa, proteasa, etc. del virus (esto tiene una alta tasa de error; algunas mutaciones virales ocurren en este paso). la infección.

Biología molecular del SARS

Los dos pasos clave de la infección por coronavirus son la unión y la fusión de membranas. Estos están mediados por la proteína de pico de coronavirus (S). Este se encuentra en la membrana de la envoltura viral y en la de su receptor huésped, uno de los receptores de la enzima convertidora de angiotensina (ACE2). La ECA2 está presente principalmente, pero no exclusivamente, en el epitelio alveolar del pulmón y en los enterocitos intestinales. La infectividad y transmisión del virus se produce principalmente a través de las vías respiratorias, pero no puede excluirse la transmisión intestinal.

La proteína S está presente en todos los coronavirus que infectan a los humanos. Es una proteína transmembrana de tipo 1 de 180 a 200 kDa; su extremo N se enfrenta al espacio extracelular y el extremo C al espacio intracelular. Se ha logrado un progreso significativo en la caracterización de la estructura de la proteína covid-19 S, incluido su dominio de unión al receptor (RBD). Durante el proceso de infección, la proteína S es escindida por furina, una enzima proteolítica; La escisión furin elimina una sección "redundante", dejando dos subunidades, S1 y S2. S1 contiene el RBD que permite que los coronavirus se acoplen y se unan al dominio peptídico complementario (PD) en ACE2.

Después de la unión, S2 facilita la fusión de las membranas de las células virales y hospedadoras; una serina proteasa del huésped juega un papel permisivo. Los dominios de unión al receptor y de fusión de la membrana de la proteína S son áreas altamente conservadas y determinantes antigénicos importantes. Los procesos de unión y fusión son comunes a la familia de los coronavirus; Por lo tanto, la interferencia con estos procesos permitiría, en principio, el éxito de funciones cruzadas, lo que podría albergar la esperanza de pan-vacunas, fármacos y anticuerpos.

Los dominios N-terminal o C-terminal de la subunidad S1 pueden servir como RBD. La parte del RBD que se une directamente al receptor se denomina motivo de unión al receptor (RBM). Generalmente, pero no siempre, el dominio N-terminal media la unión viral a receptores basados ​​en azúcar, mientras que el dominio C-terminal media la unión a receptores basados ​​en proteínas. Tanto el covid-19 (SARS-CoV-2) como el SARS-CoV-1 (que causó una pandemia anterior) utilizan el dominio C-terminal para unirse a ACE2. La mayor infectividad de covid-19 (SARS-CoV-2) en comparación con SARS-CoV-1 se ha atribuido a su mayor afinidad de unión (de 10 a 20 veces) a ACE2. Esto puede reflejar cambios en la secuencia de RBD. Sin embargo, las afinidades de unión a ACE2 de SARS-CoV-2 y SARS-CoV-1 altamente purificadas son similares. La investigación adicional se centra en resolver estos hallazgos discrepantes.

En general, las reacciones antígeno-anticuerpo están asociadas con cambios conformacionales, cuyo propósito es asegurar la máxima afinidad de unión. Los cambios conformacionales en la subunidad S1 exponen dominios ocultos en el virus covid-19 nativo, por ejemplo, regiones de repetición de heptada (HR). Estos motivos altamente conservados ubicados en la envoltura del virus tienen una estructura de haz de seis hélices y son importantes en la fusión del virus. Algunos de los dominios expuestos durante la entrada celular, por ejemplo, HR1/ HR2, son altamente inmunogénicos, proporcionando así un objetivo potencial adicional para la interrupción viral. Sin embargo, hasta ahora, la estructura de HR2 aún no está completamente resuelta.

La escisión proteolítica en sitios específicos de la subunidad S2 la convierte en "competente para la fusión". El elemento fusogénico funcional de esta subunidad es el péptido de fusión, un segmento corto bien conservado de hasta 25 aminoácidos. La fusión ocurre en la membrana plasmática o en la membrana endosomal; covid-19 utiliza ambas vías. Como se indicó anteriormente, una serina proteasa del hospedador (TMPRSS2) es necesaria para cebar la fusión de las membranas viral y del hospedador por endocitosis, provocando un cambio conformacional irreversible en la subunidad S2. 

La microscopía electrónica criogénica ha demostrado que la dimerización del dominio peptídico de ACE2 permite la unión de dos covid-19 simultáneamente, aumentando así la carga viral. La fusión de membranas también está fuertemente influenciada por el entorno extracelular, y las proteasas y el pH juegan un papel directo e indirecto en la habilitación de la fusión. Varios iones también influyen en la fusión de la membrana: el calcio la promueve estabilizando la estructura FP, mientras que el zinc y el magnesio hacen lo contrario. También se ha sugerido que el colesterol puede influir directamente en la dinámica de fusión de membranas al facilitar la formación de intermedios de fusión; sin embargo, aún no se han obtenido pruebas formales de este papel........

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español. Este blog de bioquímica-clínica está destinado a  bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog  se renuevan dentro de 3 días en forma automática. Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires, R. Argentina