sábado, 17 de julio de 2021

792- Mecanismos de propagación de las variantes del SARS-CoV-2

¿Por qué las nuevas variantes del SARS-CoV-2 se propagan más fácilmente? Julio 15, 2021. The Economist:  Alok Jha, corresponsal científico.  Zanny Minton Beddoes- Editor en jefe

Las mutaciones aleatorias permiten que las nuevas formas del virus se unan mejor a las células humanas.

Los virus al igual que todos los otros organismos, tienen su ciclos de vida. En este caso son parasitos parásitos, comenzando cuando un virus padre infecta a otra criatura y secuestra sus células para hacer copias de sí mismo. En el caso del SARS-CoV-2, el virus que está causando la pandemia, esto sucede cuando se adhiere a una enzima llamada ACE2 en la membrana de algunas células humanas y desliza su genoma a través de la célula. Esta invasión celular es ayudada por una proteína que se clava en la superficie del virus, conocida como pico. Los cambios en el pico, impulsados ​​por cambios genéticos por mutación , alteran las propiedades generales del virus, particularmente su capacidad para propagarse a través de las poblaciones.

La naturaleza mutable de los virus se basa en la aleatoriedad inherente al proceso de producir copias de cualquier objeto, lo que hace que los errores sean inevitables. A medida que las células huésped producen copias de SARS-CoV-2, ocurren errores, llamados mutaciones. La gran mayoría de los virus no sobreviven a los errores de replicación. Pero algunos lo hacen, e incluso pueden prosperar como resultado de los cambios, superando a los virus ancestrales y propagándose de manera más eficiente a través de la población de acogida. 

Hay algunas partes de la estructura del virus que son más capaces de resistir las mutaciones: la proteína de pico es la más tolerante a los cambios. Los virus mutados que sobreviven y prosperan se denominan variantes.. Estos comenzaron a emerger en serio del SARS-CoV-2 en noviembre de 2020, con la aparición de la variante Alpha y su posterior detección en Kent, en el sureste de Inglaterra. Las nuevas variantes deben tener alguna ventaja sobre las antiguas para que se conviertan en la forma dominante del virus. Esa ventaja podría obtenerse de muchas formas diferentes, pero para una enfermedad respiratoria como el covid-19, uno de los factores más importantes es la transmisibilidad, la facilidad con la que el virus pasa de una persona a otra.

Una de las primeras mutaciones en aumentar la transmisibilidad se denominó N501Y, a veces conocida como "Nelly", una de las ocho mutaciones que caracterizaron la proteína de pico de la variante Alfa. El nombre técnico de la mutación es relativamente sencillo una vez que se comprende que se refiere a cambios en el genoma del virus, y esto a la estructura de aminoácidos que codifica. 

El "501" significa que el cambio está sucediendo en el aminoácido 501 en una cadena de 1273 que comprende el pico. El orden y la composición de estos aminoácidos viene dictado por una secuencia de genoma coincidente, de modo que "501" se refiere tanto a la posición en el genoma como a la posición en la cadena de aminoácidos. "N" es la abreviatura de asparagina, que en N501Y se cambia por "Y", que es tirosina. Dado que los diferentes aminoácidos tienen propiedades químicas ligeramente diferentes, este intercambio tiene un impacto en la estructura de la proteína de pico. 

Como resultado, cambia la forma en que se distribuye la carga eléctrica a través de él. Esto altera ligeramente la forma de la proteína, ya que las áreas de carga eléctrica positiva atraen áreas de carga negativa. Gracias a esta dinámica, N501Y permite que una parte crucial del pico gire unos 20 grados, lo que le permite encontrar máyor  ajuste con el receptor ACE2. Como consecuencia, se produce una mejor unión, lo que significa que es más probable que cualquier copia de la variante que ingrese al cuerpo encuentre su objetivo y comience a replicarse. Esto aumenta la transmisibilidad.

Otras mutaciones realizan un truco similar, liberando diferentes partes del pico de diferentes maneras para que pueda unirse de manera más efectiva a ACE2. la forma en que se distribuye la carga eléctrica a través de él cambia. Esto altera ligeramente la forma de la proteína, ya que las áreas de carga eléctrica positiva atraen áreas de carga negativa. Gracias a esta dinámica, N501Y permite que una parte crucial del pico gire unos 20 grados, lo que le permite encontrar un ajuste más ajustado con el receptor ACE2. Como consecuencia, se produce una mejor unión, lo que significa que es más probable que cualquier copia de la variante que ingrese al cuerpo encuentre su objetivo y comience a replicarse. Esto aumenta la transmisibilidad. 

Los cambios en la forma de la espiga no son la única forma de aumentar la transmisibilidad. Delta, la variante que se detectó por primera vez en India y que actualmente se está extendiendo por el mundo, parece ser incluso más transmisible que Alpha y las otras variantes. El motivo no está claro, ya que los estudios estructurales detallados del pico de Delta aún no se han completado. 

Pero Ravindra Gupta, virólogo molecular de la Universidad de Cambridge, y sus colegas argumentan que el aumento de la transmisibilidad de Delta se debe, en parte, a una mutación en el sitio 681. Este es el punto del pico donde, después de unirse a ACE2, la proteína está hendido en dos. El Dr. Gupta dice que P681R, ayudado por dos mutaciones que modifican la forma en otros lugares, facilita que la proteína se corte y, por lo tanto, ingrese a las células. Su presencia también significa que, una vez que una célula comienza a producir partículas, sus proteínas de punta pueden llegar a la superficie de la célula precortada. Eso puede conducir a partículas de virus que no tienen las partes que los anticuerpos reconocen y están listas para fusionarse con cualquier célula cercana.

Hay otras mutaciones teóricas que hacen que el virus sea más transmisible y a las que aún no ha llegado (es posible que nunca lo haga, ya que pueden representar contorsiones de la proteína de la punta que no son físicamente posibles). Otros todavía lo ayudan a evadir los anticuerpos que el sistema inmunológico le arroja para proteger al cuerpo de las infecciones, al igual que un pico que se desplaza por un conjunto de mutaciones puede unirse mejor a ACE2. A su vez , otros cambios también pueden dificultar que los anticuerpos se unan al pico. 

Actualmente, Delta está tomando el relevo de otras variantes en todo el mundo, su conjunto de mutaciones le permite superarlos en el entorno evolutivo que le presentan los cuerpos humanos. Para que otra variante supere a Delta, necesitará nuevos trucos.

Leer el articulo original

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español. Este blog de bioquímica-clínica está destinado a profesionales bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. La página de este blog, se renueva dentro de 1 día en forma automática. Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires, R. Argentina