lunes, 30 de enero de 2023

947- Pruebas de trombofilias y ACOD

Jennifer Darlow, Holly Mould. Pruebas de trombofilia en la era de los anticoagulantes orales directos. Clin Med (Lond). 2021; 21(5): e487–e491. Manchester Royal Infirmary, Manchester, UK

Resumen

El tromboembolismo venoso (TEV) se reconoce cada vez más en la práctica de atención primaria y secundaria. La llegada de los anticoagulantes orales directos (ACOD) ha hecho que el manejo de la TEV sea más fácil y cómodo. Algunos pacientes que han sido medicados con ACOD pueden necesitar pruebas de detección de trombofilias adicionales, ya que se sabe que ciertas afecciones trombofílicas confieren un mayor riesgo de trombosis, aunque las pautas sobre cuándo y cómo realizar una prueba de trombofilia, especialmente en un paciente que toma un ACOD, no están claras. Esta revisión de la literatura tiene como objetivo examinar cuándo se debe realizar la detección de trombofilia en un paciente que ya toma ACOD, el efecto de los ACOD en las pruebas de trombofilia y analizar si los ACOD son seguros y efectivos en las trombofilias tanto hereditarias como adquiridas.

Introducción

La trombofilia es una afección en la que la sangre del paciente tiene una mayor tendencia a coagularse, y la primera presentación suele ser un tromboembolismo venoso (TEV). Las trombofilias pueden ser hereditarias o adquiridas y confieren diferentes riesgos de coagulación según el tipo. A pesar del mayor riesgo de trombosis en pacientes con trombofilia, no existe un consenso general sobre cuándo se deben realizar las pruebas de trombofilia. 

El uso de anticoagulantes orales directos (ACOD) ha experimentado un aumento exponencial durante la última década, sin embargo, se ha demostrado que los ACOD afectan los ensayos de coagulación utilizados para detectar trombofilias, especialmente aquellos utilizados para detectar el síndrome antifosfolípido (SAP). Esta revisión evalúa la literatura disponible sobre las recomendaciones actuales para las pruebas de trombofilia en relación con el uso de ACOD.

Tipos de trombofilia

Las trombofilias hereditarias se pueden clasificar de alto y bajo riesgo. Las trombofilias de alto riesgo se deben a deficiencias hereditarias de anticoagulantes endógenos, incluidas deficiencias de Proteína C (PC), Proteína S (PS) y antitrombina (AT), y también defectos trombofílicos combinados. Otros ejemplos incluyen la hemoglobinuria paroxística nocturna (HPN) y los pacientes con mieloneoplasmas positivos para JAK2.

Las trombofilias de bajo riesgo incluyen la mutación del factor V Leiden (FVL) y las mutaciones del gen G20210A del tiempo de protrombina (PT).  Niveles elevados de factor VIII, IX, y XI, inhibidor del activador del plasminógeno, la disfibrinogenemia y la hiperhomocisteinemia también son ejemplos de trombofilias de bajo riesgo, pero no se analizan de forma rutinaria en un cribado de trombofilia y por lo tanto no se discuten en detalle en esta presentación. 

El SAP es una trombofilia adquirida y confiere un alto riesgo tanto de TEV como de trombosis arterial.  Se caracteriza por la presencia de anticoagulante lúpico (AL), glicoproteína beta-2 y anticuerpos anticardiolipina. Los pacientes con SAP que tienen los tres anticuerpos tienen el mayor riesgo de TEV.

¿Quién necesita pruebas de trombofilia?

Es de consenso general que la mayoría de los pacientes que presentan TEV no deben someterse a pruebas de trombofilia, y en su lugar solo deben hacerlo pacientes seleccionados. Se ha propuesto que las trombofilias hereditarias se pueden detectar mediante el examen de antecedentes familiares y personales de TEV, sin necesidad de una prueba de laboratorio. 

Los pacientes con trombofilias hereditarias a menudo tienen características clave en su historial ​(Cuadro 1). Connors sugirió que todos los pacientes con antecedentes personales de TEV a los 50 años de edad o antes, junto con antecedentes familiares importantes de TEV, deberían someterse a una prueba de trombofilia Sin embargo, las pautas del  National Institute for Clinical Excellence (NICE), the American Society of Haematology y el  American College of Chest Physicians sugieren lo contrario.......

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  05 de Febrero.  
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina

miércoles, 25 de enero de 2023

946- Variación biológica de marcadores de coagulación.

Aasne K Aarsand, Ann Helen Kristoffersen, Sverre Sandberg, Bård Støve, Abdurrahman Coşkun, Pilar Fernandez-Calle, Jorge Díaz-Garzón, Elena Guerra, Ferruccio Ceriotti, Niels Jonker, Thomas Røraas, and Anna Carobene en representación de la European Federation of Clinical Chemistry and Laboratory Medicine Working Group on Biological Variation. El estudio europeo de variación biológica (EuBIVAS): datos de variación biológica para marcadores de coagulación estimados por un modelo bayesiano. Oxford Academic-Clin Chem 2021; 67 (9):1259–1270. Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.

Resumen

Antecedentes: para que los datos de variación biológica (BV) se utilicen de manera segura,  deben ser confiables y relevantes para la población en la que se aplican. Usamos muestras del European Biological Variation Study (EuBIVAS) para determinar la BV de los marcadores de coagulación mediante un modelo bayesiano solido a observaciones extremas y usamos las estimaciones de BV derivadas dentro de los participantes [CV P(i) ] para evaluar la aplicabilidad de las estimaciones de BV en la práctica clínica.

Método:  se extrajeron muestras de plasma de 92 individuos sanos durante 10 semanas consecutivas en 6 laboratorios europeos y se analizaron por duplicado para:  tiempo de tromboplastina parcial activada (APTT), tiempo de protrombina (PT), fibrinógeno, dímero D, antitrombina (AT), proteína C, proteína S libre y factor VIII (FVIII). Se aplicó un modelo bayesiano con probabilidades t de Student para muestras y réplicas para obtener estimaciones de CV P(i) y BV pronosticadas con intervalos de credibilidad del 95 %.

Resultados: para todos los marcadores, excepto el dímero D, CV P(i) se distribuyó homogéneamente en la población general del estudio o en subgrupos. Las estimaciones medias dentro del sujeto (CV I ) fueron < 5 % para APTT, PT, AT y proteína S libre, < 10 % para proteína C y FVIII, y < 12 % para fibrinógeno. Para APTT, proteína C y proteína S libre, las estimaciones fueron significativamente más bajas en hombres que en mujeres ≤ 50 años.

Conclusión: para la mayoría de los marcadores de coagulación, se aplica una estimación de CV I común para hombres y mujeres, mientras que para el TTPA, la proteína C y la proteína S libre, se deben aplicar valores de cambio de referencia específicos del sexo. El uso de un modelo bayesiano para generar un CV P(i) individual permite una mejor interpretación y aplicación de los datos.

Introducción

Los marcadores de coagulación desempeñan un papel central en una variedad de entornos clínicos, como la evaluación de un paciente que se presenta con sospecha de tromboembolismo o aumento de la tendencia al sangrado, el seguimiento de las terapias anticoagulantes, la evaluación de la función hepática y como marcadores de evaluación de riesgos. 

Para garantizar la interpretación correcta de los marcadores de coagulación en estos y otros contextos, se necesitan datos sobre la variación biológica (BV). Los datos de BV se utilizan para establecer especificaciones de calidad analítica (APS), para evaluar cambios en una serie de mediciones dentro de un individuo por el valor de cambio de referencia (RCV), para examinar el uso de intervalos de referencia basados ​​en la población, y para derivar intervalos de referencia personalizados. 

Para estas aplicaciones, las estimaciones de BV deben ser confiables y representativas de las poblaciones a las que se aplican. Los componentes de BV incluyen el BV dentro del sujeto (CV I ), que describe la fluctuación natural de la concentración alrededor de un punto establecido dentro de un individuo, generalmente informado como un CV I promedio (promedio) estimado para la población de estudio, y el valor entre sujetos. BV (CV G ), que describe la variación entre los puntos de ajuste de diferentes individuos.

Los estudios de BV generalmente se realizan como estudios experimentales prospectivos en voluntarios sanos, pero se aplican diferentes enfoques estadísticos para entregar las estimaciones de BV. El método más utilizado es el detallado por Fraser y Harris, en el que al análisis de muestras por duplicado le sigue un análisis de varianza (ANOVA) o CV-ANOVA. 

Sin embargo, estos enfoques dependen de un laborioso análisis de datos que incluye la evaluación de valores atípicos en 3 niveles y la homogeneidad de la varianza tanto del componente de variación analítica (CV A ) como del CV I para proporcionar resultados generalizables. Además, se asume la normalidad de los datos para construir intervalos de confianza (IC). Como lo muestran las revisiones sistemáticas, estos criterios se cumplen solo en un pequeño número de estudios de BV.

Para superar estos problemas, recientemente exploramos un enfoque bayesiano para estimar BV. Nuestro trabajo ha demostrado que un modelo bayesiano que aplica una distribución t de Student adaptativa es robusto frente a observaciones extremas y no requiere homogeneidad de varianza para proporcionar resultados relevantes. Además, en el análisis bayesiano , se puede estimar el CV I personal de cada individuo , denominado CV I intraparticipante [CV P(i) ]. 

La distribución del CV individual P(i)se puede utilizar para evaluar si los datos son homogéneos y, como tal, si una estimación de CV I central es representativa de la población de estudio, si se requiere un análisis de subgrupos o si los datos son demasiado heterogéneos para que una estimación de CV I promedio sea de valor. De esta manera, el enfoque bayesiano brinda la oportunidad de evaluar si los datos BV derivados son adecuados para el propósito. 

Los objetivos de nuestro estudio fueron entregar estimaciones de BV para los siguientes marcadores de coagulación: tiempo de tromboplastina parcial activada (APTT), tiempo de protrombina (PT), fibrinógeno, dímero D, antitrombina (AT), proteína C, proteína S libre y factor VIII (FVIII) obtenidos  la población registrada en el European Biological Variation Study (EuBIVAS), y utilizar la distribución del CV P(i) para evaluar la aplicabilidad del uso de estimaciones del CV I medio en la práctica clínica. 

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  30 de Enero.  
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina



viernes, 20 de enero de 2023

945- Clasificación de las neoplasias mieloides /leucemia aguda

Robert P. Hasserjian,  Attilio Orazi, Vikram Mathews, Andrew W. Roberts, Charles A. Schiffer, Anne Stidsholt Roug, Mario Cazzola, Hartmut Döhner, Ayalew Tefferi. Clasificación de las neoplasias mieloides/leucemia aguda: perspectivas globales y el enfoque de clasificación del consenso internacional. Am J Hematol. 2022; 97(5): 514-518. Department of Pathology, University of Chicago, Chicago Illinois, USA

Desde 2001, la clasificación de las neoplasias hematopoyéticas se ha unificado bajo los auspicios de la Organización Mundial de la Salud (OMS) y su afiliada la  Agencia Internacional para la Investigación del Cáncer (IARC) como parte de la serie de clasificación de la OMS, comúnmente conocida como "Libros azules de la OMS".  Antes de 2001, la clasificación de los linfomas, las leucemias y los trastornos mieloides crónicos seguía una variedad de caminos dispares y, a menudo, controvertidos. Para el linfoma, los patólogos tomaron la delantera con clasificaciones limitadas de expertos únicos o regionales, como las propuestas por Rappaport,  Lennert (Kiel), y Lukes y Collins; un intento de crear un lenguaje común entre las clasificaciones, denominado Formulación de Trabajo, se convirtió efectivamente en su propia clasificación. Si bien Rappaport incluyó las leucemias y los trastornos mieloides crónicos en su fascículo del Instituto de Patología de las Fuerzas Armadas de 1966, los hematólogos propusieron en gran medida las clasificaciones mieloides y de leucemia aceptadas, incluido el French-American-British Cooperative Group, el Polycythemia Vera Working Group y otros.

Los criterios para estas clasificaciones variaron y se basaron en diferentes combinaciones de características clínicas, morfología celular, estudios citoquímicos y, en algunos casos, inmunofenotipificación limitada, a menudo con una evaluación mínima o nula de importancia pronóstica. A pesar de estas limitaciones, las diversas clasificaciones proporcionaron criterios muy necesarios para el diagnóstico de una variedad de neoplasias hematológicas, lo que permitió un mayor estudio y perfeccionamiento. Sin embargo, ninguna de estas clasificaciones representó un consenso internacional ni incorporó aportes amplios de expertos en hematología, oncología, genética y patología.

En 1994, el International Lymphoma Study Group (ILSG), un grupo de patólogos expertos internacionales en linfoma, propuso la Clasificación Revisada de Linfoma Europeo Americano (REAL) en un intento por definir las entidades biológicas de linfoma con base en una combinación de características clínicas, morfológicas, inmunofenotípicas y hallazgos genéticos. Después de la publicación de la clasificación REAL, Les Sobin, coeditor (con Paul Kleihues) de la tercera edición de la serie Blue Book, se acercó a Elaine Jaffe, coautora de la Clasificación REAL y, en ese momento, presidenta de la Society for Hematopatología, para desarrollar una clasificación similar para la serie de Libros Azules de la OMS/IARC, una serie que no había sido ampliamente utilizada previamente para la clasificación de enfermedades hematopoyéticas. 

De hecho, la serie de la OMS de la segunda edición no había incluido las neoplasias hematopoyéticas. Jaffe y el Comité Ejecutivo de la Sociedad de Hematopatología recomendaron que el esfuerzo de la 3ra edición de la OMS (que ahora será publicado por IARC) sea supervisado por las dos principales sociedades de hematopatología, la Sociedad de Hematopatología (SH) con sede en los Estados Unidos y la Asociación Europea de Hematopatología (EAHP). ), y que se convoque un Comité Asesor Clínico (CAC) de destacados patólogos, oncólogos, hematólogos y genetistas internacionales para proporcionar información para desarrollar dicha clasificación. 

También recomendaron que la clasificación de la 3.ª edición no se limite a los linfomas y debería incluir las neoplasias mieloides y las leucemias agudas. El primer CAC se llevó a cabo en Arlie House, Virginia en 1997 y finalmente resultó en la tercera edición de la Clasificación de tumores de tejidos hematopoyéticos y linfoides de la OMS en 2001, con 75 autores contribuyentes de todo el mundo.  CAC similares se llevaron a cabo en 2007 y 2014 en Chicago, auspiciados por James Vardiman y Michelle Le Beau, y resultaron en la cuarta y cuarta edición revisada de publicaciones de la OMS/IARC en 2008 y 2017, respectivamente. La cuarta edición revisada contó con más de 200 colaboradores de 24 países. Las actas de los CAC fueron publicadas antes que los libros oficiales de la OMS/IARC por los líderes de los CAC.

Para obtener más información sobre la necesidad de aportes clínicos sobre la clasificación de las neoplasias mieloides y la leucemia aguda y las ramificaciones de dichas clasificaciones en la comunidad internacional, los organizadores de la Conferencia internacional de consenso sobre la clasificación de las neoplasias mieloides y linfoides pidieron obtener perspectivas adicionales de líderes de cuatro continentes.......


(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  25 de Enero.  
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina



Validez del bot ChatGPT

ChatGPT aparece como autor en trabajos de investigación: muchos científicos desaprueban. Nature  news 18 January 2023. Chris Stokel-Walker, Newcastle, UK.

Al menos cuatro artículos acreditan a la herramienta de IA como coautora, mientras los editores se esfuerzan por regular su uso.

El chatbot de inteligencia artificial (IA) ChatGPT que ha arrasado en todo el mundo ha hecho su debut formal en la literatura científica, acumulando al menos cuatro créditos de autoría en artículos publicados y preprints.

Los editores de revistas, investigadores y editores ahora están debatiendo el lugar de tales herramientas de IA en la literatura publicada, y si es apropiado citar al bot como autor. Los editores están compitiendo para crear políticas para el chatbot, que fue lanzado como una herramienta de uso gratuito en noviembre por la empresa de tecnología OpenAI en San Francisco, California.

AI bot ChatGPT escribe ensayos inteligentes: ¿deberían preocuparse los profesores?

ChatGPT es un modelo de lenguaje grande (LLM), que genera oraciones convincentes al imitar los patrones estadísticos del lenguaje en una enorme base de datos de texto recopilado de Internet. El bot ya está revolucionando sectores, incluido el académico: en particular, está planteando preguntas sobre el futuro de los ensayos universitarios y la producción de investigación.

Los editores y los servidores de preimpresión contactados por el equipo de noticias de Nature están de acuerdo en que las IA como ChatGPT no cumplen con los criterios para un autor de estudio, porque no pueden asumir la responsabilidad por el contenido y la integridad de los artículos científicos. Pero algunos editores dicen que la contribución de una IA a la redacción de artículos puede reconocerse en secciones distintas de la lista de autores. En un caso, un editor le dijo a Nature que ChatGPT había sido citado como coautor por error y que la revista lo corregiría.

Autor artificial

ChatGPT es uno de los 12 autores en una preimpresión sobre el uso de la herramienta para la educación médica, publicado en el repositorio médico medRxiv en diciembre del año pasado.

El equipo detrás del repositorio y su sitio hermano, bioRxiv, están discutiendo si es apropiado usar y acreditar herramientas de inteligencia artificial como ChatGPT al escribir estudios, dice el cofundador Richard Sever, director asistente de prensa del Laboratorio Cold Spring Harbor en Nueva York. Las convenciones podrían cambiar, agrega.

Dice Server: “Necesitamos distinguir el rol formal de un autor de un manuscrito académico de la noción más general de un autor como escritor de un documento. Los autores asumen la responsabilidad legal de su trabajo, por lo que solo deben incluirse personas". “Por supuesto, las personas pueden tratar de colarse, esto ya sucedió en medRxiv, al igual que las personas han enumerado mascotas, personas ficticias, etc. como autores en artículos de revistas en el pasado, pero eso es un problema de control más que un problema de política.

Un editorial en la revista Nurse Education in Practice este mes acredita a la IA como coautora, junto con Siobhan O'Connor, investigadora de tecnología de la salud en la Universidad de Manchester, Reino Unido. Roger Watson, editor en jefe de la revista, dice que este crédito se deslizó por error y pronto será corregido. “Eso fue un descuido de mi parte”, dice, porque las editoriales pasan por un sistema de gestión diferente al de los artículos de investigación.....

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina



domingo, 15 de enero de 2023

944- Pre-diagnostico de LLC

Michael Asger Andersen, Mia Klinten Grand, Christian Brieghel, Volkert Siersma, Christen Lykkegaard Andersen, Carsten Utoft Niemann. Trayectorias previas al diagnóstico de la linfocitosis, predicen el tiempo para el tratamiento y la muerte en pacientes con leucemia linfocítica crónica. Commun Med (Lond). 2022; 2: 50. Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Resumen

Antecedentes: es necesario explorar la dinámica de la linfocitosis previa al diagnóstico, en pacientes con leucemia linfocítica crónica (LLC), ya que una mejor comprensión de la progresión de la enfermedad puede mejorar las opciones de tratamiento e incluso conducir a enfoques para evitar la enfermedad. Nuestro objetivo fue investigar el desarrollo de linfocitosis antes del diagnóstico en una cohorte poblacional de pacientes con LLC y evaluar la información pronóstica en estas mediciones previas en el  diagnóstico.

Métodos: se incluyeron en el estudio todos los pacientes diagnosticados con LLC en el área metropolitana de Copenhague entre 2008 y 2016. Los resultados de los análisis de sangre previos al diagnóstico se obtuvieron de la base de datos del laboratorio de atención primaria de Copenhague que abarca todos los análisis de sangre solicitados por los médicos generales de Copenhague. Usando medidas previas al diagnóstico, desarrollamos un modelo para evaluar el pronóstico después del diagnóstico. Nuestro modelo tiene en cuenta los factores pronósticos conocidos y corresponde a la dinámica de los linfocitos después del diagnóstico.

Resultados: exploramos trayectorias de linfocitosis, asociadas con mutaciones recurrentes conocidas. Mostramos que las trayectorias previas al diagnóstico son un predictor independiente del tiempo hasta el tratamiento. La implementación de grupos de pendiente de linfocitosis prediagnósticos mejoró las predicciones del modelo (en comparación con índice de pronóstico internacional (CLL-IPI) solo) para el tratamiento durante todo el período. El modelo puede administrar los datos heterogéneos que se esperan del entorno del mundo real y agrega más información de pronóstico.

Conclusiones: nuestros hallazgos amplían el conocimiento sobre el desarrollo de la LLC y eventualmente pueden hacer posibles la utilización de medidas profilácticas.

Introducción

La leucemia linfocítica crónica (LLC) se caracteriza por una acumulación de células B CD5+ maduras clonales en la sangre periférica, la médula ósea y los órganos linfoides secundarios  La presencia de más de 5000 células B clonales por µL en sangre periférica es diagnóstica de LLC . Antes del diagnóstico, las células B clonales se desarrollan desde niveles indetectables a través de la linfocitosis de células B monoclonales (MBL) (no detectada) hasta la linfocitosis manifiesta y finalmente a un estado que excede el criterio de diagnóstico para LLC. En consecuencia, la linfocitosis a menudo ha estado presente años antes del diagnóstico y, en el momento del diagnóstico, los médicos ocasionalmente podrán evaluar esta acumulación del clon en términos de linfocitosis en muestras de sangre tomadas años antes del diagnóstico.

Una vez diagnosticada, la evolución clínica de la LLC es muy heterogénea, algunos pacientes viven décadas sin necesidad de tratamiento, mientras que otros tienen una supervivencia corta a pesar de múltiples líneas de tratamientos intensivos . El diagnóstico de LLC suele ser incidental, solo el 5 % de todos los pacientes requieren tratamiento en el momento del diagnóstico  mientras que el 95 % restante de los pacientes son observados hasta que muestran signos de enfermedad activa. Aproximadamente, más de 400.000 personas con LLC están observando y esperando la LLC en Europa y los Estados Unidos. El modelo de pronóstico actual y más utilizado, el índice de pronóstico internacional (CLL-IPI), que se basa en cinco variables: edad, etapa, aberración TP53, estado mutacional de IGHV y beta-2-microglobulina . Desafortunadamente, CLL-IPI es pobre para predecir la progresión de la enfermedad en pacientes con LLC en etapa asintomatica temprana.

Un factor de riesgo importante para casi todos los cánceres es la velocidad a la que crece; lo mismo es cierto para la LLC. Estudios previos informaron que la tasa de crecimiento del cáncer lleva información pronóstica y la linfocitosis es progresiva con un aumento del 50% en un período de 2 meses o un tiempo de duplicación de linfocitos < 6 meses son indicaciones para el tratamiento. Sin embargo, el crecimiento del cáncer es difícil de evaluar porque las células de LLC se ubican y proliferan en tres compartimentos diferentes: sangre periférica, ganglios linfáticos y médula ósea. 

Por un lado, el recuento absoluto de linfocitos (ALC) en sangre periférica es fácil de medir, pero la tasa de proliferación de células de LLC circulantes es solo entre 0,1 y 1% por día, sin tener en cuenta la proporción de células de LLC que desaparecen debido a apoptosis y necrosis . No obstante, Gruber demostró que las características genómicas se correlacionan con patrones individuales de cinética de linfocitos en sangre periférica después del diagnóstico de LLC. El siguiente paso para comprender este cáncer heterogéneo sería caracterizar el desarrollo clonal antes del diagnóstico de LLC. Tal conocimiento puede ayudar potencialmente a definir un punto de transformación clínicamente más significativo de la linfocitosis B monoclonal a la LLC que las actuales 5000 células B clonales arbitrarias por µL. Además, las trayectorias de biomarcadores importantes antes del diagnóstico de CLL pueden aportar información importante para el pronóstico...........

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  20 de Enero.  
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina



martes, 10 de enero de 2023

943- Biopsias liquidas en neoplasias

Rafael Colmenares, Noemí Álvarez, Santiago Barrio, Joaquín Martínez-López, Rosa Ayala,* Hidehito Horinouchi, Academic Editor. La enfermedad residual mínima mediante biopsias líquidas en neoplasias hematológicas. Cancers (Basel). 2022 Mar; 14(5): 1310 .Hematology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Imas12, Madrid, Spain.

Resumen

El estudio del ADN libre de células (cfDNA) y otros componentes de la sangre periférica (conocidos como “biopsias líquidas”) es prometedor y se ha investigado especialmente en tumores sólidos. Sin embargo, cada vez muestran una mayor utilidad en el diagnóstico, pronóstico y respuesta al tratamiento de las neoplasias hematológicas; en el futuro, podría prevenir técnicas invasivas, como las biopsias de médula ósea (MO). La mayoría de los estudios sobre este tema se han centrado en las neoplasias linfoides de células B; algunos de ellos han demostrado que el cfDNA se puede utilizar como una forma novedosa para el diagnóstico y el seguimiento mínimo residual de los linfomas de células B, utilizando técnicas como la secuenciación de próxima generación (NGS). En síndromes mielodisplásicos, mieloma múltiple o leucemia linfocítica crónica, las biopsias líquidas pueden permitir una interesante representación genómica de los clones tumorales que afectan a diferentes lesiones (heterogeneidad espacial). En leucemias agudas, puede ser útil en el seguimiento de la respuesta temprana al tratamiento y la predicción del fracaso del tratamiento. En la leucemia linfocítica crónica, la evaluación de cfDNA permite definir la evolución clonal y la resistencia a fármacos en tiempo real. Sin embargo, existen limitaciones, como la dificultad para obtener suficiente ADN tumoral circulante para lograr una alta sensibilidad para evaluar la enfermedad mínima residual, o la falta de estandarización del método y estudios clínicos para confirmar su impacto pronóstico. Esta revisión se centra en las aplicaciones clínicas de cfDNA en la enfermedad residual mínima, en neoplasias malignas hematológicas. 

1. Introducción

Las neoplasias malignas hematológicas son el resultado de alteraciones moleculares que afectan a los genes implicados en el crecimiento y proliferación celular. A veces, el perfil molecular de un tumor se obtiene solo analizando una pequeña porción, como en los linfomas, lo que puede conducir a la pérdida de información debido a la heterogeneidad del tumor o la presencia de múltiples sitios tumorales. Además, en ocasiones puede ser difícil obtener una buena muestra para analizar, lo que implica procedimientos invasivos y aumenta el riesgo para el paciente. El control del tumor mediante biopsias repetidas no suele ser factible.

1.1. Componentes de biopsia líquida

Diversos estudios han demostrado que la sangre contiene restos de algunos tejidos, incluidos los tejidos tumorales. El término “biopsia líquida” es un intento de aproximar el perfil molecular de un tumor analizando la sangre periférica utilizando diferentes métodos: células tumorales circulantes (CTC), ácidos nucleicos circulantes libres de células (ADN, ARNm, micro-ARN o no -codificación de ARN), "plaquetas educadas en tumores" (TEP) o exosomas.

  • Células tumorales circulantes (CTC): las CTC provienen de tumores como un paso temprano en la metástasis transmitida por la sangre. Las CTC son transitorias en la sangre, con una vida media de 1 a 2,4 h y se presentan con poca frecuencia en la mayoría de los pacientes. Se han definido varias técnicas para aislar y analizar CTC. Estas células pueden incluso usarse para establecer modelos de líneas celulares para llevar a cabo estudios terapéuticos. En neoplasias hematológicas, el análisis de CTC es posible en leucemia mieloide aguda (LMA),  leucemia linfoblástica aguda (LLA), síndromes mielodisplásicos (SMD), neoplasias mieloproliferativas (MPN), mielomas múltiples (MM) y algunos linfomas, como el manto linfoma de células (MCL), linfoma folicular (FL), linfoma de zona marginal, linfoma de linfocitos pequeños y un subgrupo de linfoma de Burkitt. Por el contrario, el linfoma difuso de células B grandes (DLBCL) y el linfoma de Hodgkin clásico (cHL) no suelen albergar CTC;
  • ARN: los microARN (miARN) son una clase de moléculas pequeñas de 19 a 24 nucleótidos de longitud y son las moléculas de ARN más abundantes en la sangre; pueden ser transportados en los exosomas o TEP. Tienen una alta estabilidad y juegan un papel importante en el crecimiento tumoral y la resistencia al tratamiento:
  • Plaquetas educadas en tumores (TEP)(?): Las plaquetas son fragmentos anucleados circulantes que se originan en los megacariocitos de la médula ósea y participan en la hemostasia y en el inicio de la cicatrización de heridas. Sin embargo, también tienen un papel en las respuestas sistémicas y locales al crecimiento tumoral, ya que las células tumorales alteran el perfil de ARN de estas plaquetas. Además, los TEP pueden ingerir el ARNm circulante liberado por las células tumorales o las proteínas asociadas al tumor solubilizadas. Estas interacciones pueden significar un potencial para el diagnóstico o seguimiento del cáncer;

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  15 de Enero.  
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina


jueves, 5 de enero de 2023

942- Hemoglobinopatias

Cornelis L. Harteveld, Ahlem Achour, Sandra J. G. Arkesteijn, Jeanet ter Huurne,  Maaike Verschuren, Sharda Bhagwandien Bisoen,  Rianne Schaap, Linda Vijfhuizen, Hakima el Idrissi,Tamara T. Koopmann. Hemoglobinopatías: mecanismos moleculares de la enfermedad y el diagnóstico. Int J Lab Hematol. 2022; 44 (1): 28-36. Department of Clinical Genetics/LDGA, Leiden University Medical Center, Leiden The Netherlands

Resumen

Las hemoglobinopatías son los trastornos monogénicos más comunes en el mundo con una carga global de morbilidad cada vez mayor cada año. Como la mayoría de las hemoglobinopatías muestran herencia recesiva, los portadores suelen ser clínicamente silenciosos. Los programas de preconcepción y detección prenatal de portadores, con la opción de diagnóstico prenatal, se consideran beneficiosos en muchos países endémicos. Con el desarrollo de herramientas genéticas como el análisis de matriz y la secuenciación de próxima generación, además de la detección de última generación a nivel hematológico, bioquímico y genético, se ha contribuido al descubrimiento de un número cada vez mayor de reordenamientos raros y nuevos factores que influyen en la gravedad de la enfermedad. durante los últimos años. Esta revisión resume los requisitos básicos para un análisis adecuado de detección de portadores, la importancia de la correlación genotipo-fenotipo y cómo esto puede conducir a interacciones excepcionales no reveladoras que causan un fenotipo clínicamente más grave en portadores asintomáticos. Un grupo especial de pacientes son los portadores de β-talasemia que presentan características de β-talasemia intermedia de diversa gravedad clínica. Los mecanismos de la enfermedad pueden involucrar genes de globina α duplicados, mosaico de isodisomía uniparental parcial del cromosoma 11p15.4 donde el El gen HBB se localiza o haplo insuficiencia de un gen no ligado SUPT5H en el cromosoma 19q, descrito por primera vez en dos familias holandesas con rasgo de β-talasemia sin variantes en el gen HBB.

1. Introduccion

La hemoglobina es la proteína principal responsable del transporte de oxígeno en el cuerpo humano y el componente principal de los glóbulos rojos. La HbA adulta (α2β2) es una proteína tetramérica cuyos genes codificantes se agrupan en dos familias separadas de grupos de genes de globina en diferentes lugares del genoma. Las hemoglobinopatías, las enfermedades genéticas relacionadas con la síntesis de hemoglobina, constituyen los trastornos monogénicos más comunes en todo el mundo. La causa genética de este grupo de enfermedades son variantes de ADN en o cerca de los genes de globina, que codifican las cadenas de globina de la proteína tetramérica de hemoglobina. Estas variantes de ADN pueden dar lugar a una síntesis alterada de globina α o globina β (los síndromes de talasemia α y β respectivamente) o cambios estructurales de la hemoglobina, lo que provoca enfermedades como la anemia drepanocítica, la anemia hemolítica, la eritrocitosis o la policitemia.

La interacción entre las variantes de talasemia y diversas variantes de hemoglobina estructural produce una amplia gama de trastornos de diversa gravedad clínica. Las categorías más importantes para las que está indicado el consejo genético, con la eventual opción del diagnóstico prenatal, son la Talasemia Mayor (TM), los Síndromes de Células Falciformes, las combinaciones HbE/β-talasemia y los síndromes de α-talasemia, como el letal Hb Síndrome de Bart y HbH-Hydrops Fetalis. La relevancia clínica de estas formas puede diferir entre las poblaciones ya que la incidencia es en gran parte específica de la población. La Β-Talasemia Mayor es un problema de salud considerable en el Mediterráneo, el Medio y Lejano Oriente, lo que resulta en programas de detección de portadores para prevenir el nacimiento de niños afectados.

Se estima que el 7 % de la población mundial tiene una variante de ADN que causa una síntesis defectuosa de la hemoglobina, lo que lleva a aproximadamente de 300.000 a 400.000 recién nacidos afectados, de los cuales la mayoría (aproximadamente 300.000) tiene síndromes de células falciformes y una parte menor  dependiente de transfusiones de talasemia β mayor  (aproximadamente 40.000).

En la mayoría de las poblaciones donde las hemoglobinopatías son endémicas, las talasemias α y β coexisten junto con varias hemoglobinas anormales. Históricamente, las hemoglobinopatías son más endémicas en las regiones subtropicales del mundo debido a la presencia de paludismo, que se extiende desde el área del Mediterráneo, Oriente Medio e India hasta el sudeste asiático. Una cantidad cada vez mayor de evidencia sugiere que la selección natural favorece el estado de portador ya que los portadores tienden a sobrevivir a una infección por Plasmodium falciparum que induce paludismo tropical mejor que los no portadores. Debido a siglos de migración, las hemoglobinopatías se han generalizado también en regiones que anteriormente no eran endémicas, como América del Norte y del Sur y el norte de Europa.....

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  10 de Enero.  
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina


viernes, 30 de diciembre de 2022

941- Deficiencia y sobrecarga de hierro

Norbert Gattermann, Martina U Muckenthaler, Andreas E Kulozik, Georgia Metzgeroth, Jan Hastka. Evaluación de la deficiencia y sobrecarga de hierro. Dtsch Arztebl Int. 2021; 118(49): 847-856. Department of Haematology, Oncology and Clinical Immunology, Düsseldorf University Hospital.

Resumen

Antecedentes: En el mundo occidental, entre el 10 y el 15 % de las mujeres en edad fértil padecen anemia ferropénica. La sobrecarga de hierro debida al tratamiento crónico con transfusiones de sangre o hemocromatosis hereditaria es mucho más rara.

Métodos: Esta revisión se basa en publicaciones pertinentes recuperadas mediante una búsqueda selectiva sobre la fisiopatología, las características clínicas y la evaluación diagnóstica de la deficiencia de hierro y la sobrecarga de hierro.

Resultados: Las principales causas de la deficiencia de hierro son la desnutrición y la pérdida de sangre. Su diagnóstico diferencial incluye la anemia ferropénica refractaria al hierro (IRIDA), una enfermedad congénita rara en la que el nivel de hepcidina está patológicamente elevado, así como la anemia más común de las enfermedades crónicas (anemia de la inflamación crónica), en la que aumentan las cantidades de hepcidina que se forman bajo la influencia de la interleucina-6 y, como resultado, se bloquea la absorción de hierro entérico. La sobrecarga de hierro se produce por un tratamiento transfusional a largo plazo o por una alteración congénita del metabolismo del hierro (hemocromatosis). Su evaluación diagnóstica se basa en hallazgos clínicos y de laboratorio, estudios de imagen y análisis de mutaciones específicas.

Conclusión:  Nuestra mejor comprensión de la fisiopatología molecular del metabolismo del hierro ayuda en la evaluación de la deficiencia de hierro y la sobrecarga de hierro y, en el futuro, puede permitir el tratamiento no solo con suplementos de hierro o quelación de hierro, sino también con modulación farmacológica dirigida del sistema regulador de hepcidina.

Introducción

Los procesos celulares vitales, como la adquisición de energía o el transporte de oxígeno, requieren un suministro adecuado de hierro. La saturación de transferrina (TSAT) es un biomarcador importante de la disponibilidad de hierro. La deficiencia de hierro  está presente si la TSAT es inferior al 20% y si la sobrecarga de hierro  supera el 40%. A niveles de TSAT por encima del 60%-70%, se forma el llamado hierro libre, que daña principalmente las células del parénquima hepático. 

Los niveles plasmáticos de hierro están regulados por el sistema hepcidina/ferroportina. La hepcidina es una hormona peptídica producida en el hígado. Circula en el plasma y se une a la proteína exportadora de hierro ferroportina, induciendo su degradación. La ferroportina que se expresa principalmente en las células de la mucosa duodenal, las células hepáticas y los macrófagos; media la regulación de la absorción de hierro en la dieta (1-2 mg por día), la liberación de hierro del hígado (según sea necesario), y reciclaje de hierro en macrófagos (20-25 mg por día). 

Cuando hay suficiente hierro disponible, el hígado produce hepcidina, que bloquea la absorción de hierro de los alimentos. Cuando las reservas de hierro están vacías, se inhibe la producción de hepcidina, de modo que la exportación de hierro mediada por ferroportina desde las células de la mucosa duodenal y la transferencia de hierro a la transferrina pueden proceder sin obstáculos.

Los trastornos en el sistema regulador de hepcidina/ferroportina causan enfermedades asociadas con la deficiencia de hierro o la sobrecarga de hierro. En la hemocromatosis hereditaria (HH), se produce muy poca hepcidina. La forma más común de HH es causada por mutaciones en el gen HFE; las formas más raras de HH se deben a mutaciones en los genes del receptor de transferrina (TfR), hemojuvelina (HJV), hepcidina o ferroportina. La deficiencia de hepcidina resultante de estas mutaciones conduce a una absorción excesiva de hierro en la dieta. La formación de hepcidina también está disminuida en las anemias por carga de hierro. Por ejemplo, en la ß-talasemia, las mutaciones en ambos genes de la ß-globina conducen a una producción insuficiente de hemoglobina normal y a una alteración de la función de los glóbulos rojos. Sin una terapia de transfusión adecuada, la hipoxia resultante induce una mayor producción de eritropoyetina (EPO), que estimula la proliferación de células progenitoras eritropoyéticas en la médula ósea en un intento de compensar la anemia........

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  05 de Enero 2023 
¡¡ Feliz Año Nuevo !! 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina



domingo, 25 de diciembre de 2022

940- Anemia hemolítica

David Palmer, Dale Seviar.Cómo abordar la hemólisis: anemia hemolítica para el médico general. Clin Med (Lond) 2022; 22(3): 210–213. King's College Hospital, London, UK

Resumen 

La anemia hemolítica puede parecer un tema complicado. La constelación de reticulocitosis, aumento de los niveles de lactato deshidrogenasa, aumento de los niveles de bilirrubina no conjugada y disminución de los niveles de haptoglobina debe llevar a los médicos generales a considerar la hemólisis como diagnóstico diferencial. Al abordar más la anemia hemolítica, subdividir a los pacientes en aquellos que son 'positivos a la prueba de antiglobulina directa (DAT)' (inmunes) o 'DAT negativos' (no inmunes) es una forma simple y clínicamente relevante de comenzar a formular una causa para el la anemia hemolítica. Las causas inmunitarias de anemia hemolítica incluyen anemia hemolítica autoinmune, fármacos y reacciones transfusionales hemolíticas tardías. Las causas no inmunitarias incluyen las hemoglobinopatías (como la enfermedad de células falciformes) y las anemias hemolíticas microangiopáticas (como la coagulación intravascular diseminada). La atención de apoyo temprana en la anemia hemolítica es importante y puede incluir transfusiones de sangre, así como intervenciones para disminuir la tasa de hemólisis, como los esteroides en la anemia hemolítica autoinmune. Las complicaciones de la hemólisis incluyen cálculos biliares de pigmento, insuficiencia cardíaca de alto gasto y tromboembolismo. La anemia hemolítica debe ser remitida al hematólogo para una mayor investigación, sin embargo, el reconocimiento y manejo temprano por parte del médico general es imperativo para mejorar el resultado del paciente.

Puntos clave 

  • En la anemia hemolítica, los glóbulos rojos se destruyen en la circulación (intravascular) o dentro del bazo (extravascular).
  • Subdividir a los pacientes en aquellos que son 'positivos en la prueba de antiglobulina directa (DAT)' (inmunes) o 'DAT negativos' (no inmunes) es una forma simple y clínicamente relevante de entender las anemias hemolíticas.
  • La constelación de reticulocitosis, niveles elevados de lactato deshidrogenasa, niveles elevados de bilirrubina no conjugada y niveles reducidos de haptoglobina confirman la hemólisis.
  • La atención de apoyo temprana en las anemias hemolíticas es importante y puede incluir transfusiones de glóbulos rojos y reemplazo de folato.
  • Las complicaciones de la hemólisis incluyen cálculos biliares de pigmento, insuficiencia cardíaca de alto gasto y tromboembolismo.

Introducción 

La anemia hemolítica es un proceso que se produce debido a la destrucción prematura de los glóbulos rojos. Puede deberse a anticuerpos dirigidos contra antígenos de glóbulos rojos u ocurrir por la descomposición no inmune de las membranas de los glóbulos rojos. Si los anticuerpos son producidos por el huésped, el trastorno se denomina anemia hemolítica autoinmune (AIHA). La incidencia de AIHA es de alrededor de 1/100.000 personas por año. Puede considerarse secundaria (debido a una causa subyacente) o primaria (que ocurre como un fenómeno propio).  En la anemia hemolítica, los glóbulos rojos se destruyen en la circulación o dentro del bazo. Esto ha llevado a la terminología de hemólisis 'intravascular' y 'extravascular', respectivamente. Aunque en muchos casos de anemia hemolítica, existe una superposición entre los dos.

Presentación clínica 

Los pacientes con anemia hemolítica pueden presentar desde un estado crónico de anemia (como en pacientes con enfermedad de células falciformes) hasta aquellos que presentan síntomas profundos de anemia aguda. Los pacientes pueden presentar cansancio, dificultad para respirar y mareos. También es importante preguntar a los pacientes sobre su historial de transfusiones, ictericia, orina oscura, si alguno de sus síntomas se ha visto exacerbado por el resfriado y si recientemente se han iniciado nuevos medicamentos. Si se sospecha anemia hemolítica, los pacientes deben someterse a un examen multisistémico completo, prestando especial atención a la presencia de linfadenopatía o esplenomegalia.

Clasificación

Hay varias formas diferentes de subclasificar la anemia hemolítica en función de la etiología, la fisiopatología o los resultados de la prueba de antiglobulina directa (DAT). Subdividir a los pacientes en aquellos que son 'DAT positivos' o 'DAT negativos' es una forma sencilla de recordar, lo que ayuda a diferenciar las causas inmunitarias de las causas no inmunitarias.

El DAT tiene como objetivo identificar glóbulos rojos recubiertos con anticuerpos o complemento y debe realizarse en todos los pacientes que presenten una nueva sospecha de anemia hemolítica. El principio de la DAT es el uso de anticuerpos antihumanos para detectar inmunoglobulinas o complemento unido in vivo a las membranas de los glóbulos rojos, lo que conduce a la aglutinación y un resultado positivo. Posteriormente, la anemia hemolítica DAT positiva implica un componente inmunológico, que puede deberse a un AIHA, anticuerpos dependientes de fármacos o una anemia hemolítica aloinmune en el contexto de una reacción transfusional. En este contexto, los anticuerpos pueden ser inmunoglobulina IgG, IgM o, en cambio, el proceso inmunitario puede deberse al complemento (C3). También puede haber una mezcla de ambos.

En la hemólisis DAT negativa, no hay componente inmunitario y, en cambio, la destrucción de la membrana de los glóbulos rojos puede deberse a causas tales como inestabilidad de la membrana (como se observa en las hemoglobinopatías), destrucción directa de las membranas de los glóbulos rojos debido a toxinas (p.ej. Clostridium perfringens ) y debido a a la anemia hemolítica microangiopática (MAHA; como en el síndrome urémico hemolítico y la púrpura trombocitopénica trombótica.........

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  30 de Diciembre 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina


 

martes, 20 de diciembre de 2022

939- Laboratorio de hematología: su evolución

Johannes J. M. L. Hoffmann, Eloísa Urrechaga. Avances recientes en el laboratorio de hematología reflejados en una década de publicaciones del CCLM. De Gruyter- Clin Chem Lab Med 2022; aop. H3L Consult, Nuenen, The Netherlands. Biocruces Bizkaia Health Research Institute, Baracaldo, Spain.

Resumen

Con motivo del 60 aniversario de Clinical Chemistry and Laboratory Medicine (CCLM) presentamos una revisión de los desarrollos recientes en la disciplina en el laboratoriode de hematología, tal como se reflejan en los artículos publicados en CCLM en el período 2012-2022. Dado que también están disponibles los datos sobre las publicaciones del CCLM desde 1963 hasta 2012, pudimos hacer una comparación entre los dos períodos. Esto reveló de manera interesante que la proporción de artículos ha aumentado constantemente y ahora alcanza el 16% de todos los artículos publicados en CCLM. También se hizo evidente que la coagulación de la sangre y la fibrinólisis, los eritrocitos, las plaquetas y la evaluación de instrumentos y métodos constituyeron los temas "más candentes" con respecto al número de publicaciones. Algunas categorías tradicionales y características de CCLM, como los intervalos de referencia, estandarización y la armonización, eran más estables y probablemente lo seguirán siendo en el futuro. Con el advenimiento de nuevos temas importantes, como ensayos de coagulación, fármacos y datos de población celular generados por analizadores de hematología, se anticipa que el laboratorio de hematología seguirá siendo una disciplina importante en las publicaciones del CCLM.

Introducción

Cuando se puso en marcha el Clinical Chemistry and Laboratory Medicine ( CCLM ) en 1963 con el nombre de 'Zeitschrift für Klinische Chemie' , se dedicó por completo a la química clínica en sentido estricto. El primer artículo que actualmente se considera perteneciente al dominio de la hematología de laboratorio apareció en 1966. Con la expansión de la revista, no solo aumentó constantemente el número de artículos publicados, sino que también aumentó la proporción de artículos sobre temas de Laboratorio de hematología (LH), hasta aproximadamente el 10 % en 2012. Y esta tendencia ascendente ha continuado hasta el presente, ya que durante la 6ª década de existencia del CCLM, casi el 16% de todos los artículos publicados han sido dominio del LH. El 60° aniversario de la revista es un buen momento para revisar los desarrollos recientes en el LH, su impacto en las publicaciones del CCLM e indirectamente su impacto en la atención al paciente. Esta revisión se centra en una serie de temas seleccionados, en los que CCLM ha jugado un papel clave en el desarrollo del área de interés o que son característicos de la revista.

Materiales y métodos

Para la revisión actual, hemos utilizado las mismas definiciones de LH de un resumen anterior para permitir las comparaciones con los primeros 50 años de CCLM. Se incluyen en el campo las categorías dadas en la Tabla 1, mientras que se excluyeron los trabajos sobre metabolismo del hierro, análisis de gases en sangre, Hb glucosilada, gammapatía monoclonal, vitamina B 12 , folato y homocisteína. La estrategia de búsqueda, categorización y el análisis de citas también fueron idénticos al informe anterior. Los análisis incluyeron los números de julio de 2012 hasta junio de 2022 de la revista.

Resultados y discusión

En su sexta década, el CCLM publicó 594 artículos sobre temas laboratorio de hematología (Tabla 1), más de 1½ veces la cantidad alcanzada en las 5 décadas anteriores (387), lo que implica un aumento muy significativo. Como la revista publicó 3.733 artículos en los últimos 10 años, también la cantidad relativa de artículos de LH aumentó a un impresionante 15,9%. El aumento constante que se observó durante los primeros 50 años claramente continuó en la última década. Esto refleja la creciente importancia del LH dentro del amplio campo del laboratorio clínico. Los factores que indudablemente juegan un papel en este nivel progresivo es la automatización, incluida la disponibilidad de nuevos parámetros de investigación, un cambio de diagnóstico molecular de la investigación a entornos de rutina y, por último, pero no menos importante, un mayor grado de profesionalismo entre los especialistas de laboratorio clínico debido mejora de la educación y especialización en hematología. O dicho de otro modo, el LH sigue madurando como disciplina, al lado y al margen de la química clínica tradicional.

Al comparar los temas abordados en estos dos períodos, muestran mucha similitud, pero se pueden notar algunas diferencias llamativas (Tabla 1). En los últimos años no se han publicado artículos sobre citocinas y factores de crecimiento, dopaje y eosinófilos. Las nuevas categorías fueron datos de población celular de analizadores de hematología y, por supuesto, Covid-19. Las categorías que mostraron un aumento evidente en la ocurrencia relativa fueron la morfología de las células sanguíneas, los eritrocitos y la hemoglobinopatía. El campo más popular siguió siendo la coagulación y la fibrinólisis con su contribución relativa más o menos constante. También los temas característicos de CCLM como el control de calidad y los valores de referencia parecían ser relativamente estables. Los temas más destacados se tratarán en detalle a continuación........

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  25 de Diciembre 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina


 

jueves, 15 de diciembre de 2022

938- Q&A: Informática en el laboratorio clínico

Q&A. Sarah E Wheeler, Darci R Block, Dustin R Bunch, Jamie Gramz, Edward Ki Yun Leung, David S McClintock, J Mark Tuthill. Informática y análisis del laboratorio clínico: desafíos y oportunidades. Oxford Academic-Clinl Chem, 2022; 68 (11): 1361-1367. University of Pittsburgh School of Medicine.USA 

The American Medical Informatics Association define la informática biomédica y de la salud como la "ciencia de cómo usar los datos, la información y el conocimiento para mejorar la salud humana y la prestación de servicios de atención médica". Más específicamente, dentro del laboratorio clínico, la informática y el análisis de datos utilizan múltiples fuentes para mejorar todos los aspectos del laboratorio  desde el flujo de trabajo y el personal hasta la interpretación de los resultados. 

Con el aumento de la complejidad de la información de atención médica, los problemas de integración e interoperabilidad se han vuelto evidentes entre los sistemas de informática en salud, lo que pone en primer plano las preguntas sobre la validez del intercambio de datos y el acceso a datos básicos. La mayoría de los datos generados dentro del laboratorio clínico son de alta calidad, bien anotados y estructurados discretamente, sin embargo convertir estos datos en información útil y procesable puede ser un puente de análisis difícil de cruzar. 

Los proveedores de instrumentos y sistemas de informatica de laboratorio (LIS) están comenzando a ayudar en la creación de informes generalizados para preguntas comunes de laboratorio; sin embargo, esto aún no alcanza el potencial del laboratorio clínico para brindar más información procesable al liderazgo del hospital, los médicos y los pacientes. La colaboración entre los informáticos, los profesionales de la tecnología de la información (TI) y los laboratoristas es fundamental para garantizar que nuestros sistemas de información de salud puedan utilizar e informar clínicamente los datos de laboratorio, además de proporcionar flujos de datos interoperables para promover la investigación, la educación y la innovación en el cuidado de la salud........ 

Para discutir estos y otros desafíos y oportunidades para la informática en el laboratorio clínico, hemos invitado a varios expertos a compartir sus experiencias.

Preguntas a considerar

  • ¿Puede describir las áreas del laboratorio clínico donde ha visto avances en el mayor uso de la informática y el análisis de datos?
  • ¿Cuáles son algunos de los desafíos operativos que aún enfrentan al proporcionar datos de laboratorio interpretables y de alta calidad a médicos y pacientes?
  • ¿Hay áreas en el laboratorio clínico en las que nos estamos quedando atrás en el uso de datos para impulsar mejoras?
  • ¿Qué obstáculos enfrentan los laboratorios clínicos para mejorar el uso de la informática y el análisis de datos? ¿Cómo podemos colaborar para superarlos?
  • ¿Existen herramientas que los proveedores ofrecen o podrían crear para ayudar a los laboratorios clínicos con recursos limitados a mejorar el uso de sus datos?
  • ¿Cómo cree que podemos mejorar  la práctica del laboratorio clínico través de la informática y el análisis?

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  20 de Diciembre 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina


sábado, 10 de diciembre de 2022

937- Errores pre-analiticos

Ann Leonard, Gerard Boran, Anne Kane , Michael Cornes Monitoreo y captura de errores de identificación de pacientes en el laboratorio de medicina. SAGE-Ann Clin Biochem 2020;57(3):266-270. Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland.

Resumen

Antecedentes: El etiquetado de las muestras y la identificación de los pacientes contribuyen significativamente a la tasa de error en la fase preanalítica en el laboratorio de edicina. Este estudio tuvo como objetivo investigar la prevalencia y la naturaleza de las prácticas de control de calidad preanalíticas para la identificación de pacientes y errores de etiquetado de muestras en laboratorios clínicos irlandeses.

Métodos: La Unidad de Bioquímica Clínica del Trinity College Dublin y el Esquema de Evaluación de Calidad Externa de Irlanda (IEQAS) desarrollaron una encuesta con la intención de recopilar información clave de cada laboratorio. Treinta y nueve preguntas se organizaron en siete subsecciones que cubren información general, requisitos de etiquetado, disponibilidad de información, criterios de rechazo, seguimiento de errores, notificación de errores e interés en participar en un esquema de evaluación de calidad externa. La encuesta se envió electrónicamente a 63 gerentes de calidad de laboratorio en 55 laboratorios en Irlanda.

Resultados: Un total de 39 respuestas (tasa de respuesta del 61 %) proporcionaron información sobre 94 departamentos o disciplinas de laboratorio independientes. Los laboratorios informaron sobre diversas prácticas y requisitos para el etiquetado de muestras y aceptaron todos los formularios de solicitud preimpresos escritos a mano. Todos los encuestados (100 %) tenían criterios de rechazo definidos tanto para el etiquetado de las muestras como para la cumplimentación del formulario de solicitud. Como era de esperar, los criterios de rechazo diferían entre las diversas disciplinas de laboratorio. Casi todos los encuestados brindaron información al personal clínico sobre los requisitos de etiquetado, pero poco más de la mitad proporcionó capacitación sobre los mismos. Un gran porcentaje de laboratorios (74%) controló la tasa de errores de etiquetado de las muestras; sin embargo, solo el 46 % tenía límites definidos como objetivo para tasas de error aceptables.

Conclusión: La encuesta observó una amplia variación en la recopilación, registro y seguimiento de errores, pero también confirmó un interés significativo en mejorar el seguimiento preanalítico y la recopilación de datos.

Introducción

Es ampliamente aceptado que la fase preanalítica es la etapa más peligrosa del proceso de análisis de laboratorio. La identificación incorrecta del paciente y las subsiguientes inexactitudes en el etiquetado de las muestras son peligrosas para los pacientes. Los intentos de reducir estos errores representan un desafío significativo tanto para el personal clínico como para el de laboratorio.

En un estudio que analizó la ocurrencia de riesgos asociados con varios aspectos del proceso de flebotomía, el etiquetado de las muestras y la identificación del paciente se identificaron como los de mayor riesgo. Estos dos pasos son fundamentales para garantizar que los resultados correctos se asocien con los pacientes correctos. La falta de identificación correcta de los pacientes puede tener implicaciones de gran alcance. En el extremo más grave del espectro, esto puede conducir a errores de diagnóstico, diagnósticos erróneos, tratamientos innecesarios, que pueden ser potencialmente dañinos o causar un retraso en el tratamiento. En el extremo menos dañino pero no menos grave, puede resultar en una prueba repetida. Ambos escenarios repercutirán en la salud mental del paciente como consecuencia del estrés y la ansiedad innecesarios que provoca.

También hay un impacto económico de estos errores que va desde el costo de una prueba repetida hasta el litigio. Además, estos errores pueden ser difíciles o imposibles de identificar en el laboratorio, especialmente si las muestras tienen un código de barras en el origen. Aunque los laboratorios emplean procesos para identificar y mitigar errores en tiempo real, el registro de estos errores a veces puede ser desordenado y hay una falta de estandarización en cómo y qué se registra.

El requisito de cumplir con la norma BS EN ISO 15189:2012 sin duda ha contribuido a mejoras significativas en la fase analítica en los últimos 10 años. Sin embargo, aún no se han aplicado las mismas metodologías rigurosas a las fases pre o post analíticas. La falta de acuerdo o consistencia en el monitoreo y estandarización a nivel nacional e internacional es evidente. Esto llevó a nuestro equipo de investigación a desarrollar una encuesta electrónica basada en un cuestionario para investigar los mecanismos actuales en uso para la identificación, el registro, el control y la mitigación de errores en el etiquetado de las muestras y la cumplimentación del formulario de solicitud, y también para evaluar la disposición a participar en una Evaluación de calidad externa ( esquema EQA).

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  15 de Diciembre 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina

 

lunes, 5 de diciembre de 2022

936- Screening neonatal en USA

Michael S. Watson, Michele A. Lloyd-Puryear, R. Rodney Howell, Peter C. J. I. Schielen, Academic Editor, Dianne Webster David S. Millington. El progreso y el futuro de las pruebas de detección para recién nacidos en EE. UU. Int J Neonatal Screen. 2022 Sep; 8(3): 41. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA.

Resumen

El progreso en la detección de recién nacidos (NBS) ha sido impulsado durante 60 años por los avances en la ciencia y la tecnología, la creciente defensa de los consumidores, las acciones de los profesionales de la salud involucrados en el cuidado de pacientes con enfermedades raras y por la financiación y las políticas del gobierno federal y estatal. Con la explosión actual de ensayos clínicos de tratamientos para enfermedades raras, la presión por la expansión ha crecido y se expresan preocupaciones sobre la capacidad de mejora y crecimiento. La secuenciación del genoma y el exoma (GS/ES) ahora ha abierto más oportunidades para la identificación temprana y la prevención de enfermedades en todos los puntos de la vida. El mayor desafío al que se enfrenta NBS se deriva de las condiciones más susceptibles de detección, y el desarrollo de nuevos tratamientos es que estamos detectando enfermedades genéticas raras. Además, comprender el espectro de gravedad requiere una gran cantidad de datos genómicos y de población. Proponemos recomendaciones para mejorar el sistema NBS y abordar demandas específicas para aumentar su capacidad: i) definiendo mejor los criterios mediante los cuales se establecen los objetivos de detección; ii) financiar la capacidad de respuesta del sistema NBS a las oportunidades de expansión, incluida la participación y el financiamiento de las partes interesadas; iii) crear una infraestructura nacional de garantía de calidad, datos, TI y comunicaciones; y iv)  mejorar las comunicaciones gubernamentales. Si bien nuestras recomendaciones pueden ser específicas para los Estados Unidos, los problemas subyacentes deben tenerse en cuenta al trabajar para mejorar los programas de NBS a nivel mundial, definir mejor los criterios mediante los cuales se establecen los objetivos de detección. 

1. Introducción

El cribado neonatal (NBS) es uno de los programas de salud pública más valorados en los EE. UU.  A través de NBS, aproximadamente 15,000 recién nacidos son identificados anualmente con condiciones para las cuales la detección, el diagnóstico y los tratamientos efectivos pueden usarse temprano en la vida para impactar significativamente la morbilidad y mortalidad infantil. Wilson y Jungner describieron las características clave de la detección de enfermedades en poblaciones como:

“La idea central de la detección y el tratamiento tempranos de enfermedades es esencialmente simple. Sin embargo, el camino para lograrlo con éxito (por un lado, llevar a tratamiento a aquellas personas con enfermedades no detectadas previamente y, por otro, evitar dañar a aquellas personas que no necesitan tratamiento) dista mucho de ser sencillo, aunque a veces pueda parecer engañoso. fácil."

Han pasado más de 60 años desde que NBS se inició formalmente en los EE. UU. como un programa estatal de salud pública para detectar fenilcetonuria (PKU) en recién nacidos (ver tablas S1a,b y S2-S4). En los EE. UU., sus programas estatales de NBS funcionan como 51 programas de prevención de salud pública independientes. Todos los estados tienen estatutos específicos que requieren directamente NBS o permiten su oferta a todos los bebés nacidos en sus jurisdicciones. Destacado entre las políticas de SbN y los logros científicos (Cuadro 1 y 2) es el reconocimiento del desarrollo de principios sobre los cuales basar las acciones de NBS y la necesidad de: (1) un proceso científico nacional de toma de decisiones; (2) el desarrollo de sistemas de garantía de calidad nacionales y estatales; (3) el desarrollo de sistemas nacionales de información y estandarización de programas; (4) desarrollo de sistemas de información de NBS; y (5) desarrollo de una política nacional para la regulación y estandarización del programa NBS.

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  10 de Diciembre. 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina


miércoles, 30 de noviembre de 2022

935- T4 libre alta cuestionable

Caso clínico. Estibaliz Alegre, Henar Casal, Juan C Galofré, Álvaro González. Concentraciones cuestionables de T4 libre alta: cuando no es suficiente confirmar con un método alternativo. Oxford Academic- Clin Chem, 2022; 68 (9): 1128–1132. Biochemistry Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.

Presentación del caso

Un varón de 60 años fue remitido al Servicio de Endocrinología por resultados confusos de las pruebas de tiroides durante un control médico de rutina. El paciente asintomático presentó aumento de las concentraciones de tiroxina libre (FT4), hormona estimulante de la tiroides (TSH) y tiroxina total (T4) dentro del rango de referencia (Tabla 1), sin taquicardia, temblor distal, discapacidad visual o cualquier otro síntomas de tirotoxicosis. Presentó un aumento de peso de 10 kg en los últimos meses (índice de masa corporal 27,7 kg/m 2), que se atribuyó a cambios en los hábitos dietéticos y de ejercicio debido a las restricciones de movilidad relacionadas con el control de la diseminación de COVID-19. El examen físico no reveló bocio ni signos de orbitopatía, y no había antecedentes personales ni familiares de trastornos tiroideos. Sus medicamentos habituales eran hidroxizina, zopiclona, ​​famotidina y clonazepam. El cuadro clínico del paciente no podía explicar los resultados elevados de T4L con TSH dentro del rango de referencia, lo que abría la posibilidad de considerar situaciones clínicas inusuales.

Los resultados iniciales se confirmaron en una nueva muestra, por lo que su endocrinólogo consultó al laboratorio de bioquímica por esta falta de concordancia con la presentación clínica. Los registros analíticos revelaron resultados similares en 2016. Además, el paciente proporcionó resultados analíticos de un laboratorio externo, realizados 2 meses antes con un método de prueba diferente (Tabla 1, Laboratorio 2), que mostraron TSH, triyodotironina total y libre dentro del rango de referencia, pero con el índice FT4 y el total de T4 aumentados.

La concentración de albúmina, como proteína transportadora de T4, también se evaluó y se encontró dentro del rango de referencia. Las actividades de la globulina transportadora de hormonas sexuales y de la enzima convertidora de angiotensina, cuyas expresiones son reguladas con el aumento de las hormonas tiroideas, permanecieron dentro de los rangos de referencia. No se observó alteración estructural en la glándula pituitaria por resonancia magnética de la silla turca. Todos estos datos analíticos y la ausencia de síntomas clínicos sugirieron una posible interferencia en la medición de FT4 y T4 total.

Puntos para recordar

  • En la hipertiroxinemia disalbuminémica familiar (FDH), las mutaciones en el gen ALB conducen a un aumento de las concentraciones totales de T4 debido a la mayor afinidad de la albúmina por las hormonas tiroideas.
  • Aunque no hay un aumento fisiológico en las concentraciones de FT4, se pueden observar concentraciones falsamente aumentadas, según el inmunoensayo utilizado.
  • Al buscar un método alternativo para confirmar los resultados analíticos, las metodologías deben examinarse en detalle, ya que pueden compartir posibles fuentes de interferencia.hipertiroxinemia disalbuminémica familiar
  • La comunicación entre el analista y el clínico puede ayudar a desentrañar las causas detrás de los resultados incongruentes.

Preguntas a considerar

  • ¿Qué puede interferir con los inmunoensayos de hormona tiroidea?
  • ¿Cuáles son las estrategias para descartar su presencia?
  • ¿Cómo pueden las mutaciones en el gen ALB afectar las concentraciones de hormona tiroidea?

Leer el articulo completo

(*) Una vez que esta en la pagina del articulo, pulsando el botón derecho puede acceder a su  traducción al idioma español Este blog de bioquímica-clínica está destinado a bioquímicos y médicos; la información que contiene es de actualización y queda a criterio y responsabilidad de los mencionados profesionales, el uso que le den a la misma. Las páginas de este blog, se renuevan el  5 de Diciembre. 
Cordiales saludos. 
Dr. Anibal E. Bagnarelli,
Bioquímico-Farmacéutico-UBA.
Ciudad de Buenos Aires. R. Argentina